CHAPTER

ONE
STRESS

1.1 INTRODUCTION

An experimental stress analyst must have a thorough understanding of stress,
strain, and the laws relating stress to strain. For this reason, Part 1 of this text has
been devoted to the elementary concepts of the theory of elasticity. The first
chapter deals with stresses produced in a body due to external and body-force
loadings. The second chapter deals with deformations and strains produced by the
loadings and with relations between the stresses and strains. The third chapter
covers plane problems in the theory of elasticity, important since a large part of a
first course in experimental stress analysis deals with two-dimensional problems.
Also treated is the stress-function approach to the solution of plane problems.
Upon completing the subject matter of Part 1 of the text, the student should have
a firm understanding of stress and strain and should be able to solve some of the
more elementary two-dimensional problems in the theory of elasticity by using the
Airy’s-stress-function approach.

1.2 DEFINITIONS

Two basic types of force act on a body to produce stresses, Forces of the first type
are called surface forces for the simple reason that they act on the surfaces of the
body. Surface forces are generally exerted when one body comes in contact with
another. Forces of the second type are called body forces since they act on each
element of the body. Body forces are commonly produced by centrifugal, gravita-
tional, or other force fields. The most common body forces are gravitational, being
present to some degree in almost all cases. For many practical applications,
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4 ELEMENTARY ELASTICITY

Figure 1.1 Arbitrary surface (either internal or external)
showing the resultant of all forces acting over the element
of area AA.

however, they are so small compared with the surface forces present that they can
be neglected without introducing serious error. Body forces are included in the
following analysis for the sake of completeness.

Consider an arbitrary internal or external surface, which may be plane or
curvilinear, as shown in Fig. 1.1. Over a small area A4 of this surface in the
neighborhood of an arbitrary point P, a system of forces acts which has a resultant
represented by the vector AF, in the figure. It should be noted that the line of
action of the resultant force vector AF, does not necessarily coincide with the
outer normal n associated with the element ofarea AA. If the resultant force AF , 18
divided by the increment of area A4, the average stress which acts over the area is
obtained. In the limit as A4 approaches zero, a quantity defined as the resultant
stress T, acting at the point P is obtained. This limiting process is illustrated in
equation form below.

" (1.1)

The line of action of this resultant stress T, coincides with the line of action of
the resultant force AF,, as illustrated in Fig. 1.2. It is important to note at this
point that the resultant stress T, is a function of both the position of the point P in
the body and the orientation of the plane which is passed through the point and
identified by its outer normal 7, In a body subjected to an arbitrary system of

Figure 1.2 Resolution of the resultant stress T, into
its normal and tangential components ¢, and T,.
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T2z

Figure 1.3 Resolution of the resultant stress T, into its
5 three cartesian components Tos Taypatd oy, .

loads, both the magnitude and the direction of the resultant stress T, at any point
P change as the orientation of the plane under consideration is changed.

As illustrated in Fig. 1.2, it is possible to resolve T, into two components: one
o, normal to the surface is known as the resultant normal stress, while the com-
ponent t,, is known as the resultant shearing stress.

Cartesian components of stress for any coordinate system can also be ob-
tained from the resultant stress. Consider first a surface whose outer normal is in
the positive z direction, as shown in F ig. 1.3. If the resultant stress T, associated
with this particular surface is resolved into components along the x, y, and z axes,
the cartesian stress components T.x> T2y, and o, are obtained. The components 7,
and ., are shearing stresses since they act tangent to the surface under considera-
tion. The component ¢, is a normal stress since it acts normal to the surface,

If the same procedure is followed using surfaces whose outer normals are in
the positive x and y directions, two more sets of cartesian components, Ty
@, aldg, o oy, respectively, can be obtained. The three different sets of three
cartesian components for the three selections of the outer normal are summarized
in the array below: :

O e T TS outer normal parallel to the x axis
Tyt Ty 050 outer normal parallel to the y axis
g s (o outer normal parallel to the z axis

From this array, it is clear that nine cartesian components of stress exist. These
components can be arranged on the faces of a small cubic element, as shown in
Fig. 1.4. The sign convention employed in placing the cartesian stress components
on the faces of this cube is as follows: if the outer normal defining the cube face is
in the direction of increasing x, y, ot z, thén the associated normal and shear stress
components are also in the direction of positive X, y, or z. If the outer normal is in
the direction of negative x, y, or z, then the normal and shear stress components
are also in the direction of negative x, y, or z. As for subscript convention, the first
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Figure 1.4 Cartesian components of stress acting on the faces of a small cubic element.

subscript refers to the outer normal and defines the plane upon which the stress
component acts, whereas the second subscript gives the direction in which the
stress acts. Finally, for normal stresses, positive signs indicate tension and negative
signs indicate compression.

1.3 STRESS AT A POINT

At a given point of interest within a body, the magnitude and direction of the
resultant stress T, depend upon the orientation of the plane passed through the
point. Thus an infinite number of resultant-stress vectors can be used to represent
the resultant stress at each point since an infinite number of planes can be passed
through each point. It is easy to show, however, that the magnitude and direction
of each of these resultant-stress vectors can be specified in terms of the nine
cartesian components of stress acting at the point. This can be seen by considering
equilibrium of the elemental tetrahedron shown in Fig. 1.5. In this figure
the stresses acting over the four faces of the tetrahedron are represented by their
average values. The average value is denoted by placing a ~ sign over the stress
symbol. In order for the tetrahedron to be in equilibrium, the following condition
must be satisfied. First consider equilibrium in the x direction:

T,xA— &, Acos (n,x)— %, 4cos (n,y)— %, A cos (n,z) + F,1hd = 0
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Figure 1.5 Elemental tetrahedron
at point P showing the average
stresses which act over its four
x faces.

where h = altitude of tetrahedron
A = area of base of tetrahedron

F, = average body-force intensity in x direction

T,. = component of resultant stress in x direction
and A cos (n, x), A cos (n, y), and A cos (n, z) are the projections of the area 4 on
the yz, xz, and xy planes, respectively.

By letting the altitude 4 — 0, after eliminating the common factor A from each
term of the expression, it can be seen that the body-force term vanishes, the
average stresses become exact stresses at the point P, and the previous expression
becomes J

Tox = 0.4, cos (n, x) + 1,, cos (1, y) + 7., cos (s 2) (1.2a)
Two similar expressions are obtained by considering equilibrium in the yand z
directions: &

Ty = 1., cos (1, x) + o,, cos (n, y) + T sC0s (n2) (1.26)

T.: = 1y, cos (n, x) + 1, cos (n, y) + 5, cos (n, 2) (1.2¢)

Once the three cartesian components of the resultant stress for a particular plane

have been determined by employing Egs. (1.2), the resultant stress T, can be
determined by using the expression

= N S B

The three direction cosines which define the line of action of the resultant stress T,
are

T, I T,
cos(ﬂ,,x)le’ cos(T,,,y)='—ﬁ COS(T"’Z):(T]




8 ELEMENTARY ELASTICITY

The normal stress ¢, and the shearing stress 7, which act on the plane under
consideration can be obtained from the expressions

g, — [T easi(iE ) and B, —k [isin (T, n)

The angle between the resultant-stress vector T, and the normal to the plane n can
be determined by using the well-known relationship

cos (T, , n) = cos (T, x) cos (n, x) + cos (T, , y) cos (n, y)
+ cos (T, , z) cos (n, z)

It should also be noted that the normal stress g, can be determined by considering
the projections of T, T,,, and T,, onto the normal to the plane under considera-
tion. Thus 4

o, = T, cos (n, x) + T,, cos (n, y) + T,, cos (n, z)

Once o, has been determined, 7, can easily be found since

5 2 2
=S

1.4 STRESS EQUATIONS OF EQUILIBRIUM

i In a body subjected to a general system of body and surface forces, stresses of
¢ variable magnitude and direction are produced throughout the body. The distrib-
ution of these stresses must be such that the overall equilibrium of the body is
maintained; furthermore, equilibrium of each element in the body must be main-
“tained. This section deals with the equilibrium of the individual elements of the
body. On the element shown in Fig. 1.6, only the stress and body-force compon-
ents which act in the x direction are shown. Similar components exist and act in
the y and z directions. The stress values shown are average stresses over the faces
of an element which is assumed to be very small. A summation of forces in the x
direction gives

0
(axx T g axx) dy dz + (ryx +

0x

(Bhees
a; dy — ryx) dx dz

a .
=+ (sz+ ;;xdz—‘czx) dxdy+ F,dxdydz=0

Dividing through by dx dy dz gives

6%, - Ot Gu 5
ax By 3 +F.=0 (1.3a)
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Figure 1.6 Small element removed from a body, showing the stresses acting in the x direction only.

By considering the force and stress components in the y and z directions, it can be
established in a similar fashion that

0t do,, 0Ot :

ORI )Y STy =

et e 20 (-8
6txz+8ryz do,, i

B Gy oz P Vs (e

where F,, F,, F, are body-force intensities (in 1b/in® or N/m3) in the x, y, and z
directions, respectively.

Equations (1.3) are the well-known stress equations of equilibrium which any
theoretically or experimentally obtained stress distribution must satisfy. In obtain-
ing these equations, three of the six equilibrium conditions have been employed.
The three remaining conditions can be utilized to establish additional relation-
ships between the stresses. :

Consider the element shown in Fig. 1.7. Only those stress components which
will produce a moment about the y axis are shown. Since the coordinate system
has been selected with its origin at the centroid of the element, the normal stress
components and the body forces do not produce any moments.
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A summation of moments about the y axis gives the following expression:

O dz dz ot,. dz dz
(sz + 2 ?) dx dy? + (rzx e 2) dx dy?
01, dx dx 0T, dx del
— (rxz+ i 2)dyd22— (rxz— = 2)dydz 5 =0
which reduces to
T dx dydz—,, dxdydz=0
Therefore, T (1.4a)

The remaining two equilibrium conditions can be used in a similar manner to
establish that
(1.4b)

(L4c)

The equalities given in Eqgs. (1.4) reduce the nine cartesian components of stress to
six independent components, which may be expressed in the following array:

Oxx Tx y Trx
TX,V O-.Vy t)’z
Tox T yz zz

1.5 LAWS OF STRESS TRANSFORMATION

It has previously been shown that the resultant-stress vector T, acting on an
arbitrary plane defined by the outer normal n can be determined by substituting
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Figure 1.8 Resolution of T, into three cartesian com-
ponents a,,, T, , and t,,. .

the six independent cartesian components of stress into Egs. (1.2). However, it is
often desirable to make another transformation, namely, that from the stress
COMPONENtS O, Gy, O,y Tays Tys» Ty, Which refer to an Oxyz coordinate system,
to the stress components 6,.,., G,y, G5 Ty s Tyzs» Tors, Which refer to an Ox'y'z’
coordinate system. The transformation equations commonly used to perform this
operation will be developed in this section.

Consider an element similar to Fig. 1.5 with an inclined face having outer
normal n. Two mutually perpendicular directions n’ and n” can then be denoted in
the plane of the inclined face, as shown in Fig. 1.8. The resultant stress T, acting on
the inclined face can be resolved into components along the directions #, ', and n”
to yield the stresses a,,, T,., and 7,,.. This resolution of the resultant stress into
components can be accomplished most easily by utilizing the cartesian compon-
ents T,., T,,, and T,,. Thus

ny»>
O = Tpx €08 (1, x) + T, cos (n, y) + T,,«os (n, z)
T = T;ix cos (1’1’, X) w ny cos (n’> y) o ’I;rz €08 (n/’ Z)
Toin = T cOSME )+ T ces (', y) + T, cos (0, z)

If the results from Egs. (1.2) and (1.4) are substituted into these expressions, the
following important equations are obtained:

Oun = Oy ©08° (1, X) + 0, cos” (n, y) + 0., cos? (n, z)
+ 21, cos (n, x) cos (n, y) + 21,, cos (n, y) cos (n, z)

+ 21, cos (n, z) cos (n, x) (1.5a)
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T, = 0, cos (n, x) €os (', x) + a,, cos (n, y) cos (7', y)
+ o, cos (n, z) cos (1, 2)
+ 1,,[cos (n, x) cos (n, y) + cos (n, y) cos (n', x)]
+ 1,,[cos (n, y) cos (', z) + cos (n, z) cos (', )
(n

+ 1, [cos (n, z) cos (1, x) + cos i x)eosiln, z)] (1.5b)

T, = Oxx COS (1, X) COS (", x) + o, cos (n, y) cos (1", ¥)

+ @ cosi
(

n, z) cos (n’, z)
n, x )

+ryfcos + cos (n, y) cos (1", x)]

n’, z) + cos (n, z) cos (n", y)]

v

(

cos (n”, y
(

+ 1, Jcos (n, z) cos (1, x) + cos (n, x) cos (1", 2)] (1.5¢)

)
+ 1,,[cos (n, y) cos
)

Equations (1.5) provide the means for determining normal- and shear-stress com-
ponents at a point associated with any set of cartesian reference axes provided the
stresses associated with one set of axes are known.

Expressions for the stress COMPONENtS G 1 Ty s Tzrzrs Tryrs Tyzs Taw can be
obtained directly from Eq.(1.5a) or Eq. (1.5h) by employing the following
procedure.

In order to determine o, , select a plane having an outer normal n coincident
with x'. A resultant stress T, = T, s associated with this plane. The normal stress
0., associated with this plane is obtained directly from Eq. (1.5a) by substituting
x' for n. Thus

Gy = Oy COS® (x’,«’:x) + oyy cos? (x, y)
+ a;z cos? >(x"'; Z)k Zfﬁx‘y' cos (x' x) cos (x', y)

+ 2ry2 cos (x', y) cos (x, z) + Zé;x cos (x, z) cos (x, x)  (L.6a)
By selecting n coincident with the y’ and z' axes and following the same procedure,
expressions for o, and 7., can be obtained as follows:

Gy = Gyy €087 (¥ ¥} + 0z cos? (¥, z)
+ g, cos? (¥, x) + 21, cos (, y) cos (¥, 2)
+ 21, cos (), z) cos (¥, x) + 21y, COS (', x) cos (v, y)  (1.6b)
G =0, cos lE2) Ha cos” (2, %)
+ a,, cos® (Z y) + 27, cos (z, z) cos (Z, x)
+ 21, cos (2, x) cos (2, y) + 21, cos (2, y) cos (2 z) W 6o

The shear-stress component T, 18 obtained by selecting a plane having outer
normal n coincident with x’ and the in-plane direction ' coincident with y', as

]
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Figure 1.9 Resolution of 7, into three cartesian
Stress components o, T, , and t,.,..

shown in Fig. 1.9. The shear stress T,y is then obtained from Eq. ( 1.5b) by substi-
tuting x’ for n and y’ for n". Thus

Ty = 04y COS (X', X) COs (', X)

+ 0, cos:{x', y) cos (¥, y) + o, cos (x/, z) cos (y, z)

» X) €08 (), y) + cos (x', y) cos (¥, x)]
+ 1,.[cos (x', y) cos (¥, z) + cos (x', 2) cos (¥, y)]

+ 7,,[cos (x

+ T2.{cos (¥, 2) cos (v, x) + cos (x', x) cos (¥, z)] (1.6d)

By selecting n and n’ coincident with the y' and 2/, and 7’ and x’ axes, additional
expressions can be developed for 7, and t,,,,, respectively, as follows:

Ty = 6, €08 (), y) cos (2, y)

+ 02 cos (¥, z) cos (2, 2) + o, cos (¥, x) cos (2, x)

+ 7,[c0s (', y) cos (2, z) + cos (v, z) cos (2, V)]

+ 7..[cos (', z) cos (2, x) + cos (¥, x) cos (z'52)]

+ Ty[cos (), x) cos (2, y) + cos (. ) cos (2, x)] (1.6¢)
o = 04, €08 (2, z) cos (X, z)

+ 0. €08 (Z), x) cos (¥, x) + o, cos (2, y) cos (x/, y)

+ T2.fcos (2, z) cos (x', x) + cos (2, x) cos (x/, z)]

+ 75,008 (2, x) cos (', ) + cos (Z, y) cos (x, x)]

+ 1,.[cos (2, y) cos (x', z) + cos (2, z) cos (x/, )] (1.61)

These six equations permit the six cartesian components of stress relative to the
Oxyz coordinate system to be transformed into a different set of six cartesian
components of stress relative to an Ox'y'z’ coordinate system.
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1.6 PRINCIPAL STRESSES

In Sec. 1.2 it was noted that the resultant-stress vector T, at a given point P
depended upon the choice of the plane upon which the stress acted. If a plane is
selected such that T, coincides with the outer normal n, as shown in Fig. 1.10, it is
clear that the shear stress t, vanishes and that T,, o, and n are coincident.

If n is selected so that it coincides with T,, then the plane defined by n is
known as a principal plane. The direction given by n is a principal direction, and
the normal stress acting on this particular plane is a principal stress. In every state
of stress there exist at least three principal planes, which are mutually perpendicu-
lar, and associated with these principal planes there are at most three distinct
principal stresses. These statements can be established by referring to Fig. 1.10
and noting that

T, = 6, cos (n, x) T,, =0, cosin J) W —o, cos (1, 2) (a)

If Egs. (1.2) are substituted into Egs. (a), the following expressions are obtained:

Il
Q
o
@]
w

=
=
S—

0y €08 (1, X) + T,y €08 (1, ) + T, cOS (, 2)

1, €os (1, x) + a,, cos (m, y) + 7., cos (n, z) = g, cos (1, y) (b)

Il
Q

Il
Q

1., cos (n, x) + 1,, cos (n, y) + 0, cos (n, z)

Rearranging Egs. (b) gives

(0. — 6.) €OS (1, X) + T, COS (1, V) + Ty COS (7, 2)

1,, cos (1, x) + (0, — 0,) cos (n, y) + 1, cos (n, 2)

0
0 Soiane)
0

1., cos (n, x) + 1,, cos (n, y) + (9., — 7,) COS (n, 2)

Figure 1.10 Coincidence of T, with the outer normal n
indicates that the shear stresses vanish and that o,
becomes equal in magnitude to T,.
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Solving for any of the direction cosines, say cos (n, x), by determinants gives

0 Ty Tox
0 T =i 3
0 o Tielei0
cosiln, x) =
Oxx = On Tyx Tox
Txy vy %n Tzy
Tz Tyz Ozz — Oy

It is clear that nontrivial solutions for the direction cosines of the principal plane
will exist only if the determinant in the denominator is zero. Thus

g =0, = Tyx T

T 08 =07, T =0
T T 0., — O,

zXx

Xz yz

Expanding the determinant after substituting Eqs. (1.4) gives the following imposr-
tant cubic equation:

63 _\(O.xx IE O.yy S 0:2)03

[ N N D)
ot (oxx O-yy s O-yyo'zz ot 0;;0xx Txy Tyz sz)a-n

2 2 2 1
W (o-xxo-yya-zz — Oxx Tyz vl O'yytzx T azzrxy ol 2Txytyzfzx) =0 ‘

The roots of this cubic equation are the three principal stresses. By substitut
the six cartesian components of stress into this equation, one can solve for ¢, and
obtain three real roots. Three possible solutions exist.

L. If 6, 0,, 05 are distinct, then n,, n,, and n; are unique and mutually
perpendicular. ;

2. If 6, = 0, # 03, then n, is unique and every direction perpendicular to n is &
principal direction associated with ¢, = o, .

3. If 6, = 0, = 03, then a hydrostatic state of stress exists and every direction is =
principal direction. "

Once the three principal stresses have been established, they can be sub-
stituted individually into Egs. (c) to give three sets of simultaneous equations
which together with the relation

cos? (n, x) + cos? (n, y) + cos? (n, z) = 1

can be solved to give the three sets of direction cosines defining the prin
planes. A numerical example of the procedure used in computing princy
stresses and directions is given in the exercises at the end of the chapter.

In treating principal stresses it is often useful to order them so that
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stress having the smallest algebraic value. It is important to recall in this ordering
process that tensile stresses are considered positive and compressive stresses are
considered negative.

Another important concept is that of stress invariants. It was noted in Sec. 1.5
that a state of stress could be described by its six cartesian stress components with
respect to either the Oxyz coordinate system or the Ox'y'z’ coordinate system.
Furthermore, Egs. (1.6) were established to give the relationship between these
two systems. In addition to Egs. (1.6), three other relations exist which are called
the three invariants of stress. To establish these invariants, refer to Eq. (1.7), which
is the cubic equation in terms of the principal stresses 0,05, and o5 . By recalling
that 6,, 6,, and o5 are independent of the cartesian coordinate system employed,
it is clear that the_coefficients of Eq. (1.7) which contain cartesian components of
the stresses must also be independent or invariant of the coordinate system. Thus,
from Eq. (1.7) it is clear that

Iy =6, F 6y + 0, = Opy G i@y

e 2 D))
12 b Oxxo-yy i: O-yyo-zz + 0,,05x — Txy — Tyz Tzx
e 7 2 2
= Gy Oy + Oy Oz + OOz — Ty — Tz — T (1.8)

ey 2 2 2
13 =0,,0,,0;; — O-xx‘[yz 5 O-yyrzx — Oz Txy +F 2Txytyzrzx

s ) O s 2
= Gy Oy Opn— Osnynr — OBl 055 Ty 420, T U
where I,, I,, and I; are the first, second, and third invariants of stress, respec-

tively. If the Oxyz coordinate system is selected coincident with the principal
directions, Egs. (1.8) reduce to :

11=0'1+O'2+0'3 122610'2+O'20'3+O'3O'1 I3=0'10'20'3 (19)

1.7 MAXIMUM SHEAR STRESS

In developing equations for maximum shear stresses, the special case will be
considered in which 7, =1, = 7., = 0. No loss in generality is introduced by
considering this special case since it involves only a reorientation of the reference
axes to coincide with the principal directions. In the following development nq, 11, ,
and n, will be used to denote the principal directions. In Sec. 1.3 the resultant
stress on an oblique plane was given by

Tﬁ 5T Tr%x i Tt%y -+ Trzlz (a)

Substitution of values for T,,, T,,, and T, from Egs. (1.2) with principal normal
stresses and zero shearing stresses yields

T2 = 6% cos? (n, ny) + 03 cos® (n, n,) + o3 cos® (n, n3) (b)
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Also from Eq. (1.5a)
0, =0y cos® (n, ny) + 0, cos? (n, ny) + o3 cos® (n, ns) (c)

Since 77 = T} — 02, an expression for the shear stress t, on the oblique plane is
obtained from Egs. (b) and (c) after substituting ! = cos (n, ny), m = cos (n, n,),
and n = cos (n, ny) as

T =012+ 0im? + 02n? — (6,17 + 6,m? + ayn?)? ()

The planes on which maximum and minimum shearing stresses occur can be
obtained from Eq. (d) by differentiating with respect to the direction cosines I, m,
and n. One of the direction cosines, n for example, in Eq. (d) can be eliminated by
solving the expression

P+m?+n2=1 (e)

for I and substituting into Eq. (d). Thus

T = (07 = 03P + (63 ~ a}m? + 03 — (61 — 03)2 + (0, — a3)m + 637 (f)
By taking the partial derivatives of Eq. (f), first with respect to I and then with
respect to m, and equating to zero, the following equations are obtained for
determining the direction cosines associated with planes having maximum and
minimum shearing stresses:

I[3(o, — e — a3)l> — (02— 03)m2] =0 (9)
m[%(oz—o;;)—(ol—03)12—(02—0'3)m2]=0 (h)

One solution of these equations is obviously /=m=0. Then from Eq. (e),
n = +1 (a principal plane with zero shear). Solutions different from zero are also
possible for this set of equations. Consider first that m = 0; then from Eq. (g),

= +(3)"/? and from Eq. (¢), n= +(4)Y2 Also if /=0, then from Eq. (h),
m = +(3)''? and from Eq. (¢), n = +(4)"/2. Repeating the above procedure by
eliminating / and m in turn from Eq. (f) yields other values for the direction
cosines which make the shearing stresses maximum or minimum, Substituting the
values I = +(3)"/? and n = +($)"/? into Eq. (d) yields <

T =191 + 0+ 303 — (3o + 0 + d0,)?
from which
U= %(‘71 —03)

Similarly, using the other values for the direction cosines which make the shearing
stresses maximum gives

Tn:%(OH a3 and Tn:%(az_%)

Of these three possible results, the largest magnitude will be obtained from
o, — o5 if the principal stresses are ordered such that 0y =0, > 03. Thus

Tmax = %(O-max ke, Jmin) = %(0-1 = 0-3) (110)
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Admissible
combinations )

Figure 1.11 Mohr’s Circle for the three-dimensional
state of stress.

A useful aid for visualizing the complete state of stress at a point is the
three-dintensional Mohr’s circle shown in Fig. 1.11. This representation, which is
similar to the familiar two-dimensional Mohr’s circle, shows the three principal
stresses, the maximum shearing stresses, and the range of values within which the
normal- and shear-stress components must lie for a given state of stress.

L8 THE TWO-DIMENSIONAL STATE OF STRESS

For two-dimensional stress fields where Oz = T;x = T,, = 0, 2’ is coincident with z,
and 6 is the angle between x and x/, Egs. (1.6a) to (1.6f) reduce to

T = Oy €08% 0 + 0, sin? @ + 2z, sin 6 cos 6

Ok 'Zf' Tyy + o ;_U_yl’ cos 26 + z,, sin 26 (L.11a)

g, 2 oh ;
Oyy = 0y, €08* 0 + ¢, sin’ 6 217, sin 6 cos @

A 42- G %COS 20 — 7, sin 26 (1.11b)

Twy =0y, cos 0 sin 0 — 5, cos 6 sin § + T,y(COs? 0 — sin? §)

= %sin 20 + 1., cos 20 (1.11¢)
Ouzr = Toiy =Ty, =0 (1.114)

The relationships between stress components given in Egs. (1.11) can be gra-
phically represented by using Mohr’s circle of stress, as indicated in Fig. 1.12, In
this diagram, normal-stress components ¢ are plotted horizontally, while shear-
stress components 7 are plotted vertically. Tensile stresses are plotted to the right
of the 7 axis. Compressive stresses are plotted to the left. Shear-stress components
which tend to produce a clockwise rotation of a small element surrounding the
point are plotted above the ¢ axis. Those tending to produce a counterclockwise



STRESS 19

In the xy plane

Fiéure 1.12 Mohr’s circle of stress.

o

rotation are plotted below. When plotted in this manner, the stress components
associated with each plane through the point are represented by a point on the
circle. The diagram thus gives an excellent visual picture of the state of stress at a
point. Mohr’s circle and Egs. (1.11) are often used in experimental stress-analysis
work when stress components are transformed from one coordinate system to
another, These relationships will be used frequently in later sections of this text,
where strain gages and photoelasticity methods of analysis are discussed. Since
two-dimensional stress systems are often considered in subsequent chapters, it will
be useful to consider the principal stresses which occur in a two-dimensional stress
system. If a coordinate system is chosen so thato,, =7, = 7,. = 0, then a state of
plane stress exists and Eq. (1.7) reduces to

G-n[o-f an (Gxx * O.yy)an it (Uxx Oyy — Tﬁy)] =0 (a)
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Solving this equation for the three principal stresses yields

=l 2
T Z}g_}h i \/(Gx" . O'yy) o TJZW e =10 (1.12)

The two direction cosines which define the two principal planes can be
determined from Eq. (1.11¢), which gives ., in terms of a,y,0,,, T, and the angle
0 between x and x'. If x’ and y’ are selected so that x" = 1, and y' = n;,thent,,
must vanish since no shearing stresses can exist on principal planes. Thus the

following equation can be written:

Ty ; 5% sin 2(ny, X) + 7o, cos 2(ny, x) =0 (1.13)

Dividing through“ by cos 2(n,, x) and simplifying gives

2
tan 2(ny, X) = g (1.14a)
Oxx — Oyp
and hence cos 2(nyg, X) = — - e (1.14b)
‘\/(O-xx s O',vy)2 it 41)26)’
2T (1.14c)

sin 2, 3= i SR det
xx yy xy

Equations (1.14) are used in solving for the direction of n, if the cartesian stress
COMPONENtS Ty, Oy, Ty, are known.

1.9 STRESSES RELATIVE TO A PRINCIPAL COORDINATE
SYSTEM

If the coordinate system Oxyz is selected to coincide with the three principal
directions ny, n,, ny, then g, = 0., 6, =0y, 03 = Oz, and T =
This reduces the six components of stress to three, which permits a considerable
simplification in some of the previous results. Equations (1.2) become

T. = ¢y cos(nx} L=y tesiny) = Ty~ 05 608 (m,2) {L15)

and Equations (1.6) reduce to

’

2 (x', ) + a3 cos® (X', z)

6, =6, €08 (¥, x) + g, cos® (
2 (y, y) + o5 cos® (¥, 2)

6,, = a; cos? (Z, x) + 6, cos® (£, y) + 03 cos® (2, z)

o, =0, cos? (y, x)+ o, cos

vy

Toy = 04 €08 (X', X) €08 (', ) + 07 cos (x', y) cos (¥, y)

+ o4 cos (x/, z) cos (¥, 2) (1.16)
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Ty = 01 €08 (¥, X) cos (2, x) + o, cos (¥, y) cos (2, y)
+ a3 cos (Y, z) cos (Z, z)

T,x = 01 €08 (2, X) cos (X', x) + &, cos (z/, y) cos (x', y)
+ a5 cos (Z, z) cos (x', z)

Often experimental methods yield principal stresses directly, and in these
cases Egs. (1.16) are frequently used to obtain the stresses acting on other planes.

1.10 SPECIAL STATES OF STRESS

Two states of stress occur so frequently in practice that they have been classified.
They are the state of pure shearing stress and the hydrostatic state of stress. Both
are defined below.

1. A state of pure shear stress exists if one particular set of axes Oxyz can be found
such that ¢, = 0,, = 0,, = 0. It can be shown that this particular set of axes
Oxy:z exists if and only if the first invariant of stress I; = 0. The proof of this
condition is beyond the scope of this text. Two of the infinite number of arrays
which represent a state of pure shearing stress are given below.

0 Txy Tz O xx Txy rxz
Ty 0 1y OF Lo Dy e o0
e+ T Tor 0
Pure shear Can be converted to the
form shown on the left by a
suitable rotation of the co<
ordinate system
2. A state of stress is said to be hydrostatic if 6., = 0,, = 9.. = —p and all the

shearing stresses vanish. In photoelastic work a hydrostatic state of stress is
often called an isotropic state of stress. The stress array for this case is

—p 0 0
0 —p 0
0 0 —-p

One particularly important property of these two states of stress is that they
can be combined to form a general state of stress. Of more importance,
however, is the fact that any state of stress can be separated into a state of pure
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shear plus a hydrostatic state of stress. This is easily seen from the three arrays
shown below:

Oxx txy Tz =D 0 0
v Ty Tzl T i 0
Txz Tyz Oz 0 0 =i/l
O.xx + p Txy txz
+ o g D T (15l
Txz Tyz 0,2 e p !
General state of stress = hydrostatic state of stress
= + state of pure shearing stress

It is immediately clear that the array on the left represents a general state of stress
and that the center array represents a hydrostatic state of stress; however, the
‘right-hand array represents a state of pure shear if and only if its first stress
invariant is zero. This fact implies that

(0xx +P) + (0, + P) + (6 + 1) =0
Hence p=—34(04u+ 0, +02) (1.18)

If the p represented in the hydrostatic state of stress satisfies Eq. (1.18), then the
separation of the state of stress given in Eq. (1.17) is valid. In the study of plasti-
city, the effect of the hydrostatic stresses is usually neglected; consequently, the

principle illustrated above is quite important.

EXERCISES

1.1 At a point in a stressed body, the cartesian components of stress are o, = 60 MPa,
,,= —30 MPa, o, = 30 MPa, 7, = 40 MPa, 1, = 7,, = 0. Determine the normal and shear stresses
on a plane whose outer normal has the direction cosines

cos (mx)=75 cos(ny) =1y cos(m 2)=1%
1.2 At a point in a stressed body, the cartesian components of stress are g = 70 MPa, 0, = 60 MPa,
6,. = 50 MPa, 7, =20 MPa, 7, = —20 MPa, 1,, = 0. Determine the normal and shear stresses on a
plane whose outer normal has the direction cosines

cos (n,x)=4%  cos(ny)= 13 cos (mz) =733

1.3 Ata point in a stressed body, the cartesian components of stress are o, = 40 MPa, o, = 60 MPa,

,, = 40 MPa, 7,,= 80 MPa, 7, =50 MPa, 7, = 60 MPa. Determine (a) the normal and shear
stresses on a plane whose outer normal has the direction cosines

cos (mx)=% cos(ny)=3 cos (nz)=7%

and (b) the angle between T, and the outer normal n.

)
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1.4 At a point in a stressed body, the cartesian components of stress are g, = 60 MPa, o, = 40 MPa,
., =20 MPa, t,, = 40 MPa, t,, = 20 MPa, 7, = 30 MPa. Determine (a) the normal and shear
stresses on a plane whose outer normal has the direction cosines

cos (n,x)=4% cos(n,y)=3% cos(nz)=3%

and (b) the angle between T, and the outer normal n.
1.5 Determine the normal and shear stresses on a plane whose outer normal makes equal angles with
the x, y, and z axes if the cartesian components of stress at the point are

git=lg =Ko m=—10) T,y =75 MPa 7,,=0 1,, = 100 MPa

xx yy
1.6 The following stress distribution has been determined for a machine component:

., =3x2 -3y —¢ a,, =3y ,=3%+y—z+3%

Sis - L s
T = 2o 00 s 7. =0 Te=X+y—3

X

Is equilibrium satisfied in the absence of body forces?
1.7 If the state of stress at any point in a body is given by the equations

o =ax+by+ecz o, =dxl+eyt+f22 o, =gx+hy? + iz

T, =k oow, =litmz ot = nx’ o+ pzt

what equations must the body-force intensities F, F,, F, satisfy?

1.8 At a point in a stressed body, the cartesian components of stress are g, = 90 MPa, g, = 60 MPa,
0., =30 MPa, 7, =30 MPa, 7, = 30 MPa, t,, = 60 MPa. Transform this set of cartesian stress
components into a new set of cartesian stress components relative to an Ox'y’z’ set of coordinates
where the Ox’y'z’ axes are defined as:

0 Case 1 Case 2 Case 3 Case 4
x—x n/4 /2 0 /2
y—y n/4 /2 n/2 0
717 0 0 /2 /2

1.9 At a point in a stressed body, the cartesian components of stress are o, = 70 MPa, o,, = 60 MPa,
6., =50 MPa, 7, = 20 MPa, t,, = —20 MPa, 7, = 0. Transform this set of cartesian stress compon-

sz 5 Uzx
(N

ents into a new set of cartesian stress components relative to an Ox’y’z’ set of coordinates where the
Ox'y'z' axes are defined by the following direction cosines:

X y Z
g 2 2 Sl
X 3 3 3
‘ 2 3t 2
Y =3 3 =3
4 1 2 2
Z =5 3 3

1.10 For the state of stress at the point of Exercise 1.1, determine the principal stresses and the
maximum shear stress at the point.
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1.11 For the state of stress at the point of Exercise 1.2, determine the principal stresses and the

" maximum shear stress at the point.

1.12 For the state of stress at the point of Exercise 1.3, determine the principal stresses and the
maximum shear stress at the point.
1.13 For the state of stress at the point of Exercise 1.4, determine the principal stresses and the
maximum shear stress at the point.

1.14 Determine the principal stresses and the maximum shear stress at the point x = 4, y-= 1,z = § for

the stress distribution given in Exercise 1.6..

Bl

1.15 At a point in a stressed body, the cartesian components of stress are o, = 50 MPa,
o, =50 MPa, ¢,, = 50 MPa, 7, = 100 MPa, 7, = 0, 7,, = 50 MPa. Determine (a) the principal
stresses and the maximum shear stress at the point and (b) the orientation of the plane on which the
maximum tensile stress acts.

1.16 At a point in a stressed body, the cartesian components of stress are o, =0, =0, =0,
7,, =75 MPa, 7,, =0, 7,, = 100 MPa. Determine (a) the principal stresses and the maximum shear
stress at the point and (b) the orientation of the plane on which the maximum tensile stress acts.
1.17 At a point in a stressed body, the cartesian components of stress are 6., = 0,, = 0., = 25 MPa,
7,, = 100 MPa, 7, =0, 7, = 75 MPa. Determine the principal stresses and the associated principal

- directions. Check on the invariance of I, I,, and I5.

1.18 At a point in a stressed body, the cartesian components of stress are o, =0, =0, = 0,
T,y =1, = T;; = 100 MPa. Determine the principal stresses and the associated principal directions.
Check on the invariance of I, I,, and I5.

1.19 A machine component is subjected to loads which produce the following stress field in a region
where an oilhole must be drilled: o, = 100 MPa, ¢, = —50 MPa, ¢, = 50 MPa, 7, = 50 MPa,
7,. = 1,, = 0. To -minimize the effects of stress concentrations, the hole must be drilled along a line
parallel to the direction of the maximum tensile stress in the region. Determine the direction cosines
agsociated with the centerline of the hole with respect to the reference Oxyz coordinate system.

120 A two-dimensional state of stress (¢, = t,, = 7,, = 0) exists at a point on the free surface of a
machine component. The remaining cartesian components of stress are o, = 100 MPa,
o, = —80 MPa, 7, = —40 MPa. Determine (a) the principal stresses and their associated directions
at the point and (b) the maximum shear stress at the point.

1.21 A two-dimensional state of stress (6, =1,, =1, = 0) exists at a point on the surface of a loaded
member. Determine the principal stresses and the maximum shear stress at the point if the remaining
cartesian components of stress are o, = 90 MPa, o, = 60 MPa, 7, = 40 MPa.

1.22 A two-dimensional state of stress (o, = 1, = 7, = 0) exists at a point on the surface of a loaded
member. The remaining cartesian components of stress are o, = 100 MPa, ¢, =70 MPa,
1,, = 20 MPa. Determine the principal stresses and the maximum shear stress at the point.

1.23 A two-dimensional state of stress (o, = 7, = 7., = 0) exists at a point on the surface of a loaded
member. The remaining cartesian components of stress are o,,= 90 MPa, o, =40 MPa,
7., = 60 MPa. Determine the principal stresses and the maximum shear stress at the point.

1.24 Solve Exercise 1.22 by means of Mohr’s circle.

1.25 Solve Exercise 1.23 by means of Mohr’s circle.

1.26 At the point of Exercise 1.22, determine the normal and shear stresses on a plane whose outer
normal has the direction cosines

cos(n,x)=% cos(ny)=% cos(nz)=0

1.27 At the point of Exercise 1.23, determine the normal and shear stresses on a plane whose outer
normal has the direction cosines

cos (n,x)=1 cos(my)=2% cos(nz)=%

1
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1.28 There is a crack in a plate of steel which makes the material in that area weak in tension and
shear. The plate must be used for a member which will be loaded to produce the following state of
stress in the plane of the plate: ., = 100 MPa, 0, = —60 MPa, 7.y = 20 MPa. How should the x and
y axes be oriented with respect to the crack in order to minimize the effect of the crack?

1.29 At a point in a metal machine part the principal stresses are g, = 150 MPa, o, = 100 MPa,
03 = 50 MPa. Determine the normal and shear stresses on a plane whose outer normal has the
direction cosines

it
cos (n,n) = ‘“73 cos (n,n) =0 cos (1, ny) = >

1.30 If the three principal stresses relative to the Oxyz reference system are ¢, = ¢, = 100 MPa,
6,=0,,=80 MPa,o; =0, = —20 MPa, determine the six cartesian components of stress relative to
the Ox'y'z’ reference system where Ox'y'z" is defined as:

0 r Case 1 J Case 2 Case 3 Case 4
o= | /4 /2 0 n/4
y—y ’ /4 /2 | m/4 =0
=2 |0 0 / n/d n/4

1.31 Resolve the general state of stress given in Exercise 1.1 into a hydrostatic state of stress and a state
of pure shearing stress.

1.32 Resolve the general state of stress given in Exercise 1.2 into a hydrostatic state of stress and a state
of pure shearing stress.

1.33 Resolve the general state of stress given in Exercise 1.4 into a hydrostatic state of stress and a state
of pure shearing stress.

1.34 Resolve the two-dimensional state of stress given in Exercise 1.21 into a hydrostatic state of stress
and a state of pure shearing stress.

1.35 Determine the octahedral normal and shearing stresses associated with the principal stresses a,,

6,,and ¢;. Octahedral normal and shearin g stresses occur on planes whose outer normal makes equal
angles with the principal directions n,, n,, and n,.
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