CHAPTER

ELEVEN
BASIC OPTICS

11.1 THE NATURE OF LIGHT

The phenomenon of light has attracted the attention of man from the earliest
times. The ancient Greeks considered light to be an emission of small particles by
a luminous body which entered the eye and returned to the body. Empedocles
(484-424 B.C.) suggested that light takes time to travel from one point to another;
however, Aristotle (384-322 B.c.) later rejected this idea as being too much to
assume. The ideas of Aristotle concerning the nature of light persisted for approxi-
mately 2000 years.

In the seventeenth century, considerable effort was devoted to a study of the
optical effects associated with thin films, lenses, and prisms. Huygens (1629-1695)
and Hooke (1635-1703) attempted to explain some of these effects with a wave
theory. In the' wave theory, a hypothetical substance of zero mass, called the ether,
was assumed to occupy all space. Initially, light propagation was assumed to be a
longitudinal vibratory disturbance moving through the ether. The idea of secon-
dary wavelets, in which each point on a wavefront can be regarded as a new source
of waves, was proposed by Huygens to explain refraction. Huygens’ concept of
secondary wavelets is widely used today to explain, in a simple way, other optical
effects such as diffraction and interference. At about the same time, Newton
(1642-1727) proposed his corpuscular theory, in which light is visualized as a
stream of small but swift particles emanating from shining bodies. The theory was
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able to explain most of the optical effects observed at the time, and, thanks to
Newton’s stature, was widely accepted for approximately 100 years.

A revival of interest in the wave theory of light began with the work of Young
(1773-1829), who demonstrated that the presence of a refracted ray at an interface
between two materials was to be expected from a wave theory while the corpuscu-
lar theory of Newton could explain the effect only with difficulty. His two-pinhole
experiment, which demonstrated the interference of light, together with the work
of Fresnel (1788-1827) on polarized light, which required transverse rather than
longitudinal vibrations, firmly established the transverse ether wave theory of
light.

The next major step in the evolution of the theory of light was due to Maxwell
(1831-1879). His electromagnetic theory predicts the presence of two vector fields
in light waves, an electric field and a magnetic field. Since these fields can propa-
gate through space unsupported by any known matter, the need for the hypotheti-
cal ether of the previous wave theory was eliminated. The electromagnetic wave
theory also unites light with all the other invisible entities of the electromagnetic
spectrum, e.g., cosmic rays, gamma rays, x-rays, ultraviolet rays, infrared rays.
microwaves, radio waves, and electric-power-transmission waves. The wide range
of wavelengths and frequencies available for study in the electromagnetic spec-
trum has led to rapid development of additional theory and understanding.

Observation of the photoelectric effect by Hertz in 1887, which cannot be
explained by a wave theory but is easily explained by a particle theory, led to
Einstein’s photon theory in 1907. The modern theory of wave mechanics suc-
cessfully reconciles these two approaches, in which energy can be manifest in
either particle or wave forms. For most of the effects to be described in later
sections of this text the wave properties of light are important and the particle
characteristics of individual photons have little application. For this reason.
simple wave theory will be used in most of the discussions which follow.

11.2 WAVE THEORY OF LIGHT [1]

Electromagnetic radiation is predicted by Maxwell’s theory to be a transverse
wave motion which propagates with an extremely high velocity. Associated with
the wave are oscillating electric and magnetic fields which can be described with
electric and magnetic vectors E and H. These vectors are in phase, perpendicular
to each other, and at right angles to the direction of propagation. A simple
representation of the electric and magnetic vectors associated with an electromag-
netic wave at a given instant of time is illustrated in Fig. 11.1. For simplicity and
convenience of representation, the wave has been given sinusoidal form. Other
wave forms such as the sawtooth waveform or the square waveform are often
encountered in electronics. These complicated waveforms are frequently repre-
sented for mathematical analysis by a Fourier series; therefore, the simple sinusoi-
dal representation provides the basic information needed for the analysis of more
complicated shapes.
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Figure 11.1 The electric and magnetic vectors associated with a plane electromagnetic wave.

All types of electromagnetic radiation propagate with the same velocity in free
space (approximately 3 x 10® m/s, or 186,000 mi/s). Characteristics used to differ-
entiate between the various radiations are wavelength and frequency. These two
quantities are related to the velocity by the relationship

Af—c (11.1)
where A = wavelength
f = frequency
¢ = velocity of propagation
The electromagnetic spectrum has no upper or lower limit of wavelength or
frequency. The radiations observed to date have been classified in the broad
general categories shown in Fig. 11.2.

Light is usually defined as radiation that can affect the human eye. From
Fig. 11.2 it can be seen that the visible range of the spectrum is a small band
centered about a wavelength of approximately 550 nm. The limits of the visible
spectrum are not well defined because the eye ceases to be sensitive at both long
and short wavelengths within the region; however, normal vision is usually
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Figure 11.2 The electromagnetic spectrum.
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Table 11.1 The visible spectrum

Wavelength range, nm Color Wavelength range, nm Color
400-450 Violet 550-570 Yellow-green
450-480 Blue 570-590 Yellow
480-510 Blue-green 590-630 Orange
510-550 Green 630-700 Red

assumed to be the range from 400 to 700 nm. Within this range the eye interprets
the wavelengths as the different colors listed in Table 11.1. Light from a source
that emits a continuous spectrum with equal energy for every wavelength is in-
terpreted as white light. Light of a single wavelength is known as monochromatic
light.

Electromagnetic waves can be classified as one-, two-, or three-dimensional
according to the number of dimensions in which they propagate energy. Light
waves which emanate radially from a small source are three-dimensional. Two
quantities associated with a propagating wave which will be useful in discussions
involving geometrical and physical optics are wavefronts and rays. For a three-
dimensional pulse of light emanating from a source, both the electric vector and
the magnetic vector exhibit the periodic variation in magnitude shown in Fig. 11.1
along any radial line. The locus of points on different radial lines from the source
exhibiting the same disturbance at a given instant of time, e.g., maximum or
minimum values, is a surface known as a wavefront. As time passes, the surface
moves and indicates how the pulse is propagating. If the medium is optically
homogeneous and isotropic, the direction of propagation will be at right angles to
the wavefront. A line normal to the wavefront, indicating the direction of propaga-
tion of the waves, is called a ray. When the waves are propagated out in all
directions from a point source, the wavefronts are spheres and the rays are radial
lines in all directions from the source. At large distances from the source, the
spherical wavefronts have very little curvature, and over a limited region they can
be regarded as plane. Plane wavefronts can also be produced by using a lens or
mirror to direct a portion of the light from a point source into a parallel beam.

In ordinary light, which is emitted from, say, a tungsten-filament light bulb,
the light vector is not restricted in any sense and may be considered to be
composed of a number of arbitrary transverse vibrations. Each of the components
may have a different wavelength, a different amplitude, a different orientation
(plane of vibration), and a different phase with respect to the others. The vector
used to represent the light wave can be either the electric vector or the magnetic
vector. Both exist simultaneously, as shown in Fig. 11.1, and either or both can be
used to describe the optical effects associated with photoelasticity, moiré, and
holography. The electric vector has been shown in experiments by Wiener (1890)
to be the active agent in interactions between light and a photographic plate;
therefore, in all future discussions, attention will be devoted exclusively to vibra-
tions associated with the electric vector.



BASIC OPTICS 343

A. The Wave Equation

Since the disturbance producing light can be represented by a transverse wave
motion, it is possible to express the magnitude of the light (electric) vector in terms
of the solution of the one-dimensional wave equation:

E=f(z—ct)+ g(z + ct) (11.2)
where E = magnitude of light vector
z = position along axis of propagation

t = time
f(z — ct) = wave motion in positive z direction
g(z + ct) = wave motion in negative z direction

Most optical effects of interest in experimental stress analysis can be described
with a simple sinusoidal or harmonic waveform. Thus, light propagating in the
positive z direction away from the source can be represented by Eq. (11.2) as

E=f(z—ct)=§c0527”(z—a) (11.3)
where K is related to the strength of the source and K/z is an attenuation
coefficient associated with the expanding spherical wavefront. At distances far
from the source, the attenuation is small over short observation distances, and
therefore it is frequently neglected. For plane waves, the attenuation does not
occur since the beam of light maintains a constant cross section. Equation (11.3)
can then be written as

2
E=acos7n(z—ct) (11.4)
where a is a constant known as the amplitude of the wave. A graphical representa-
tion of the magnitude of the light vector as a function of position along the
positive z axis, at two different times, is shown for a plane light wave in Fig. 11.3.
The length from peak to peak on the magnitude curve for the light vector is

E=acos 2}\—7T (z—ct)

Figure 11.3 Magnitude of the light vector as a function of position along the axis of propagation
at two different times.
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defined as the wavelength A. The time required for passage of two successive peaks
at some fixed value of z is defined as the period T of the wave and is given by

= = L1

. (115)
The frequency of the light vector is defined as the number of oscillations per
second. Thus, the frequency is the reciprocal of the period, or

e
=_—=- 11.6
f=z=2 (116)
The terms angular frequency and wave number are frequently used to simplify the
argument in a sinusoidal representation of a light wave. The angular frequency w

and the wave number ¢ are given by

cu=2?n=2nf (11.7)
2n
== 118
e= (113)
Substituting Egs. (11.7) and (11.8) into Eq. (11.4) yields
E = acos (¢z — wt) (a)

Two waves having the same wavelength and amplitude but a different phase
are shown in Fig. 11.4. The two waves can be expressed by

2 2
E1=acos7n(z+51—ct) E2=acosf—(z+52—ct) (11.9)

m

E= acos (z—ct)
By
e IE Bﬂ
m )

W‘a cos— (z+8;—ct)

=acos’ "~ Tiz+ §,—ct)

Figure 11.4 Magnitude of the light vector as a function of position along the axis of propagation for
two waves with different initial phases.
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where §; = initial phase of wave E,
6, = initial phase of wave E,
0 = 8, — 0, = the linear phase difference between waves
The linear phase difference § is often referred to as a retardation since wave 2 trails
wave 1.

The magnitude of the light vector can also be plotted as a function of time at a
fixed position along the beam. This representation is useful for many applications
since the eye, photographic films, and other light-detecting devices are normally
located at fixed positions for observations.

B. Superposition of Waves

In later chapters on photoelasticity and moiré, the phenomena associated with the
superposition of two waves having the same frequency but different amplitude and
phase will be encountered. At a fixed position z, along the light beam, where the
observations will be made, the equations for the waves can be expressed as

2
El —=ay) COSTTC(ZO ol 51 = Ct) =a; Cos (¢1 = w[)

E, = a, cos 2% (20 + 0, — ct) = a, cos (¢, — wt) (11.10)

where ¢, = phase angle associated with wave E; at position z,
¢, = phase angle associated with wave E, at position z,
a; = amplitude of wave E,
a, = amplitude of wave E,
Consider first the case where the light vectors associated with the two waves
oscillate in the same plane. The magnitude of the resulting light vector is simply

E=E, +E, (b)
Substituting Egs. (11.10) into Eq. (b) yields
E = a;(cos wt cos ¢, + sin wt sin ¢,)
+ ay(cos wt cos ¢, + sin wt sin @,)
= (a; cos ¢, + a, cos ¢,) cos wt + (a; sin ¢; + a, sin ¢,) sin wt
= a cos ¢ cos wt + a sin ¢ sin wt
= a cos (¢ — wr) (c)

where a*=a} + a3 + 2a,a, cos (¢, — &) (11.11)

. a; sin + a, sin
tan¢— 1 ¢1 2 ¢2

= 1112
a; Cos ¢; + a, cos ¢, ( )

Equation (c) indicates that the resulting wave has the same frequency as the
original waves but a different amplitude and a different phase angle. The above
procedure can easily be extended to the addition of three or more waves.
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A special case frequently arises where the amplitudes of the original waves are
equal. In this case the amplitude of the resulting wave is given by Eq. (11.11) as

a=./2ai[1 + cos (¢, — é1)] (@)

el b o ST —
a= \/2(1%(1 + cos?) = \/4af coszz% ()

In most problems in optics the amplitude of the resulting wave is important, but
the time variation is not. This results from the fact that the eye and other sensing
instruments respond to the intensity of light (intensity is proportional to the
square of the amplitude) but cannot detect the rapid time variations (for sodium
light the frequency is 5.1 x 1014 Hz). Thus for the special case of two waves of
equal amplitude the intensity is given by

5
I~a®=dg? cos2"7 (11.13)

Equation (11.13) indicates that the intensity of the light wave resulting from
superposition of two waves of equal amplitude is a function of the linear phase
difference § between the waves. The intensity of the resultant wave assumes its
maximum value when § — ndn=0,1,2,3,..., or when the linear phase difference
is an integral number of wavelengths. Under this condition

1 =43 (f)

which indicates that the intensity of the resultant wave is four times the intensity
of one of the individual waves. The intensity of the resultant wave assumes its
minimum value when § = [(2n 4+ 1)/2]4,n = 0,1,2,3,..., or when the linear phase
difference is an odd number of half wavelengths. Under these conditions

= (9)

The modification of intensity by superposition of light waves is referred to as an
interference effect. The effect represented by Eq. (f) is constructive interference.
The effect represented by Eq. (g) is destructive interference. Interference effects
have important application in photoelasticity, moiré, and holography.

In previous discussions, the electric vector used to describe the light wave was
restricted to a single plane. Light exhibiting this preference for a plane of vibration
is known as plane- or linearly polarized light.

Two other important forms of polarized light arise as a result of the superpo-
sition of two linearly polarized light waves having the same frequency but mu-
tually perpendicular planes of vibration, as shown in Fig. 11.5. At a fixed position
2o along the light beam, the equations for the two waves can be expressed as

2
Bii—1a.¢os 7” (zo + 65 — ct) = a, cos (¢, — wt)

2
E,=a, cosT7t (z0 + 0, — ct) = a, cos (¢, — wt) (11.14)
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E;=a, cos2)\—"(2+5X —ct)

27
£, =a, cos—k-(z+8y —ct)

Figure 11.5 Two linearly polarized light waves having the same frequency but mutually perpendicular
planes of vibration.

where ¢, = phase angle associated with wave in xz plane
¢, = phase angle associated with wave in yz plane
a, = amplitude of wave in xz plane
a, = amplitude of wave in yz plane

The magnitude of the resulting light vector is given by

E=/E:+ E2 ()

Considerable insight into the nature of the light resulting from the superposition
of two mutually perpendicular waves is provided by a study of the trace of the tip
of the resulting electric vector on a plane perpendicular to the axis of propagation
at the point z,. An expression for this trace can be obtained by eliminating time
from Egs. (11.14). Thus

B aEar B :
E -2 ?ayycos (¢y e ¢x) ot a‘é = Sln2 (¢y = ¢x) (l)
. 2 275
or since Oy — ¢, = - (6, —0,) = —
A A
E? E_E 2né  E? )
— —2-=2 o +2= s1n2—n5 (11.15)
az a.a, A a,

Equation (11.15) is the equation of an ellipse; therefore, light exhibiting this
behavior is known as elliptically polarized light. At a fixed instant in time, the tips
of the electric vectors at different positions along the z axis form an elliptical helix,
as shown in Fig. 11.6. During an interval of time f, the helix will translate a
distance ct in the positive z direction. As a result, the electric vector at position z,
will rotate in a counterclockwise direction as the translating helix intersects the
perpendicular plane at position z,. The locus of points representing the trace of
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Figure 11.6 The elliptical helix formed by the tips of the light vectors along the axis of propagation
at a fixed instant of time.

the tip of the light vector on the perpendicular plane is the ellipse described by
Eq. (11.15) and illustrated in Fig. 11.7.

A special case of elliptically polarized light occurs when the amplitudes of the
two waves E, and E, are equal and 6 =[(2n+ 1)/4]4, n=0, 1, 2, ..., so that
Eq. (11.15) reduces to

Blape = g2 (/)

Equation (j) is the equation of a circle; therefore, light exhibiting this behavior is
known as circularly polarized light. In this case, the tips of the light vectors form a
circular helix along the z axis at a given instant of time. For § = A/4, 54/4, ..., the
helix is a left circular helix, and the light vector at position z, rotates counter-
clockwise with time when viewed from a distant position along the z axis. For
0 =23A/4, 7)/4, ..., the helix is a right circular helix, and the electric vector at
position z, rotates clockwise with time.

Figure 11.7 Trace of the tip of the light vector on the
perpendicular plane at position z;.
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A second special case of elliptically polarized light occurs when the linear
phase difference J between the two waves E, and E, is an integral number of half
wavelengths (6 = ni/2, n=0, 1, 2, ...). For this case, Eq. (11.15) reduces to

E,=2E, (k)

Equation (k) is the equation of a straight line; therefore, light exhibiting this
behavior is known as plane- or linearly polarized light. The amplitude of the
resulting wave depends upon the amplitudes of the original waves since

a=./a +a’ 0)]

The orientation of the plane of vibration depends upon the ratio of the amplitudes
of the original waves a,/a, and upon the linear phase difference § between the
waves. For 6 =0, 4, 2/, ..., the plane of vibration lies in the first and third
quadrants. For 6 = 1/2,34/2,54/2, ..., the plane of vibration lies in the second and
fourth quadrants.

Thus far in the discussions, light has been treated as a wave motion without
beginning or end. The light emitted by a conventional light source, eg, a
tungsten-filament light bulb, consists of numerous short pulses originating from a
large number of different atoms. Each pulse consists of a finite number of oscilla-
tions known as a wavetrain. Each wavetrain is thought to be a few meters long
with a duration of approximately 10~ 8 s. Since the emissions occur in individual
atoms which do not act together in a cooperative manner, the wavetrains may
differ from each other in plane of vibration, frequency, amplitude, and phase. Such
light is referred to as incoherent light. Light sources such as the laser, in which the
atoms act cooperatively in emitting light, produce coherent light, in which the
wavetrains are monochromatic, in phase, linearly polarized, and extremely
intense. For the interference effects discussed previously, coherent wavetrains are
required.

C. The Wave Equation in Complex Notation

A convenient way to represent both the amplitude and phase of a light wave, such
as the one represented by Eq. (11.4), for calculations involving a number of optical
elements is through the use of complex or exponential notation. Recall the Euler
Identity

€®=cos 0+ isin 0 (m)
where i = — 1. The sinusoidal wave of Eq. (11.4) is obviously the real part of the
complex expression

E = aei(Zn/).)(z—ct) i aei(d)—wt) (n)

The imaginary part of Eq. (m) could also be used to represent the physical wave;
however, it is normally assumed that the real part of a complex quantity is the one
having physical significance.
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If the amplitude of the wave is also considered to be a complex quantity, then

a = a, + ia; = qe'l?m29

where a= /a2 T (o)

2n a;

and tan 7 = ;r (p}

A wave with an initial phase ¢ can be expressed in exponential notation as

E A dei(Zn/i)(z—ct) 2 aei(2n/l)(z+6—ct) (1116}

The physical waves previously represented by Egs. (11.9) are simply the real part
of Eq. (11.16) when represented in exponential notation. Superposition of two or
more waves having the same frequency but different amplitude and phase is easily
performed with the exponential representation. The real and imaginary parts of
the amplitudes of the individual waves are added separately in an algebraic
manner. The resultant complex amplitude gives the amplitude and phase of a
single wave equivalent to the sum of the individual waves. Extensive use will be
made of this representation in Chap. 13, where the theory of photoelasticity is
discussed.

The real and imaginary parts of a complex quantity such as the amplitude of a
wave may also be written

where a*=u,—=va

is the complex conjugate of the original complex amplitude

a=a, +iq
From Eq. (o),
a —a Pa?
Thus a® = ag* (11.17)

This representation for the square of the amplitude of a complex quantity will be
useful in future calculations dealing with the intensity of light.

11.3 REFLECTION AND REFRACTION [2]

In the previous section the electromagnetic wave nature of light was discussed,
and wavefronts and rays were defined. The discussions were limited to light pro-
pagating in free space. Most optical effects of interest, however, occur as a result of
the interaction between a beam of light and some physical material. In free space,
light propagates with a velocity ¢, which is approximately 3 x 108 m/s. In any
other medium, the velocity is less than the velocity in free space. The ratio of the
velocity in free space to the velocity in a medium is a property of the medium
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known as the index of refraction n. The index of refraction for most gases is only
slightly greater than unity (for air, n = 1.0003). Values for liquids range from 1.3 to
L5 (for water, n = 1.33) and for solids range from 1.4 to 1.8 (for glass, n = 1.5). The
index of refraction for a material is not constant but varies slightly with
wavelength of the light being transmitted. This dependence of index of refraction
on wavelength is referred to as dispersion.

Since the frequency of a light wave is independent of the material being
traversed, the wavelength is shorter in a material than in free space. Thus a wave
propagating in a material will develop a linear phase shift § with respect to a
similar wave propagating in free space. The magnitude of the phase shift, in terms
of the index of refraction of the material, can be developed as follows. The time
required for passage through a material of thickness h is

h
P=
- (@)
where h is the thickness of the material along the path of light propagation and v is
the velocity of light in the material. The distance s traveled during the same time
by a wave in free space is

s=ct= = (b)
Thus the distance § by which the wave in the material trails the wave in free space
is given by

ch

5=s—h=fv——h=h(n—-1) (11.18)

since the index of refraction of the material has been defined as n = ¢/v. The

retardation 6, as given by Eq. (11.18), is a positive quantity since the index of

refraction of a material is always greater than unity. The relative position of one

wave with respect to another can be controlled by including the retardation in the
phase of the appropriate wave equation.

When a beam of light strikes a surface between two transparent materials with
different indices of refraction, it is experimentally observed that, in general, it is
divided into a reflected ray and a refracted ray, as shown in Fig. 11.8. The reflected
and refracted rays lie in the plane formed by the incident ray and the normal to the
surface and known as the plane of incidence. The angle of incidence «, the angle of
reflection 5, and the angle of refraction y are related as follows:

For reflection: o=p (11.19)

sina  n,

For refraction: — (11.20)

siny  ny
where n; = index of refraction of material 1
n, = index of refraction of material 2

ny; = index of refraction of material 2 with respect to material 1
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Figure 11.8 Reflection and refraction of a
_Refracted ray plane light wave at an interface between two
= transparent materials.

If the light beam originates in the material having the higher index of refrac-
tion, ny; will be a number less than unity. Under these conditions, some critical
angle of incidence o, is reached for which the angle of refraction is 90°. For angles
of incidence greater than the critical angle, there is no refracted ray and total
internal reflection occurs. Total internal reflection cannot occur when the beam of
light originates in the medium with the lower index of refraction.

The laws of reflection and refraction give information about the direction of
reflected and refracted rays but no information with regard to intensity. Intensity
relationships, which can be derived from Maxwell’s equations, indicate that the
intensity of a reflected beam depends upon both the angle of incidence and the
direction of polarization of the incident beam. Consider a completely unpolarized
beam of light falling on a surface between two transparent materials, as shown in
Fig. 11.9. The electric vector for each wavetrain in the beam can be resolved into
two components, one perpendicular to the plane of incidence (the perpendicular
component) and the other parallel to the plane of incidence (the parallel compon-
ent). For completely unpolarized incident light, the two components would have
equal intensity. The intensity of the reflected beam can be expressed as

I, = RI, (11.21)
where I; = intensity of incident beam
I, = intensity of reflected beam
R = reflection coefficient

Unpolarized

incident wave Reflected wave

AN
\<— Parallel component
vanishes at the
Material 1 polarizing angle o = o,

= 7
Material 2 ! o Perpendicular component
: < Parallel component
I
I
I
| /
I

Refracted wave

Figure 11.9 Reflection and refrac-
tion at the polarizing angle.
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Reflection coefficient

0° 30° 60° 90°  Figure 11.10 Reflection coefficients for an air-
Angle of incidence glass interface (ny, = 1.5).

For the perpendicular component

sin? (« — y)
Rygo = —5—— 1k
T O 7) \ize)
For the parallel component
tan? (x — y)
.= = 11.23
085 tan? (o =+ ) ( )

Reflection coefficients for an air-glass interface (n,, = 1.5) are shown in Fig. 11.10.
These data indicate that there is a particular angle of incidence for which the
reflection coefficient for the parallel component is zero. This angle is referred to as
the polarizing angle a,,. Since the parallel component is zero when the angle of
incidence is equal to the polarizing angle, the beam reflected from the surface is
plane-polarized with the plane of vibration perpendicular to the plane of
incidence. Equation (11.23) indicates that the reflection coefficient for the parallel
component is zero when tan (2 + y) = co or when a + y=90°. Thus from
Eq. (11.20),

n,
tan o, = n—l =Ny,
It is also experimentally observed that phase changes occur during reflection. A
phase change of § = 4/2 occurs when light is incident from the medium with the
lower index of refraction. When light is incident from the medium with the higher
index of refraction, no phase change occurs upon reflection.

Metal surfaces exhibit relatively large reflection coefficients, as shown in
Fig. 11.11. At oblique incidence, the coefficients for light polarized parallel to the
plane of incidence are less than the coefficients for the perpendicular component.
A change of phase also occurs with metallic reflection. Unfortunately, the phase
change varies with both angle of incidence and direction of polarization. As a
result, plane-polarized light is changed by oblique reflection to elliptically po-
larized light.
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Previous discussions of reflection and refraction have dealt with materials
that are optically isotropic (the index of refraction is the same for all directions in
the material); therefore, light propagates with the same velocity in all directions.
When a beam of ordinary light is directed at oblique incidence onto the surface of
certain crystalline materials such as calcite and quartz, it is observed that, in
general, a reflected beam and two refracted beams are produced. This phen-
omenon is known as double refraction, and the material is said to be birefringent.
One of the refracted rays, known as the ordinary ray, propagates with the same
velocity along all directions through the crystal and obeys Snell’s law of refraction
as given by Eq. (11.20). The second refracted ray, known as the extraordinary ray,
propagates with different velocities along different directions through the crystal
and is not governed by Eq. (11.20). Along one direction through the crystal,
known as the optic axis (the optic axis is a direction and not a specific line), the
ordinary and extraordinary rays travel with the same velocity.

If a ray of ordinary light is directed onto the face of a calcite crystal at normal
incidence, the ordinary ray passes through the crystal with no deviation while the
extraordinary ray is refracted at some angle with respect to the normal to the
surface. Since opposite faces of the crystal are parallel, the two rays emerge as
parallel beams. The two beams are observed to be plane-polarized in orthogonal
directions. The vibrations associated with the ordinary ray are perpendicular to
the plane containing the optic axis and the ordinary ray. The vibrations associated
with the extraordinary ray lic in the plane containing the optic axis and the
extraordinary ray. The ordinary ray and the extraordinary ray lie in the same
plane when the plane of incidence coincides with the plane containing the optic
axis and the normal to the surface.

For many optical applications, calcite crystals are cut into rectangular blocks
with the faces parallel and perpendicular to the optic axis. Light entering the
crystal at normal incidence on any of the faces does not deviate from the normal
to the surface; therefore, the ordinary and extraordinary rays follow the same path
through the crystal. For two of the faces (those perpendicular to the optic axis),
the path is along the optic axis, and so the two rays travel with the same velocity.
For the other four faces, the path is perpendicular to the optic axis, and so the two
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rays travel with different velocities. As @ result, the waves emerse from the crystal
with a linear phase difference 0. Plane-polarized incident light would emerge from
such a crystal as elliptically polarized light. Optical elements which convert one
form of polarized light into another are referred to as retarders or wave plates.

11.4 IMAGE FORMATION BY LENSES AND MIRRORS [2]

In the previous section, reflection and refraction of 2 plane light wave at a plane
interface between two materials was considered. More complicated situations
frequently arise in the optical systems used for experimental stress-analysis Work.
Since lenses and mirrors are widely used in many of these systems, a brief discus-
sion of the significant features of these clements 18 provided here for future
reference.

A. Plane Mirrors

Figure 11.12 shows an object O placed at 2 distance u in front of a plane mirror.
The light from each point on the object (such as point A)isa spherical wave which
reflects from the mirror in the manner discussed in Sec. 11.3. When the eye or other
light-sensing instrument intercepts the reflected rays, they perceive an image I of
the object O at a distance v behind the mirror, which can be determined by
extending the reflected rays to the position A’ as shown in Fig. 11.12. In this
instance, the image I is a virtual image since light rays do not pass through image
points such as A'. From the geometry of B 1112t is obvious that the magni-
tudes of u and v are the same. The image is erect and has the same height as the
object. One difference between the object and the image not apparent from
Fig. 11.121s that left and right are interchanged (an image of a left hand appears
as a right hand in the mirror).

B. Spherical Mirrors

Figure 11.13 shows an object O placed at a distance u in front of a concave
spherical mirror. The center of curvature of the mirror is located at C, and the
focal point is at F. The light from each point on the object reflects in the manner

Mirror

Figure 11.12 Image formation by a plane
mirror.
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Mirror
A

Figure 11.13 Image formation by a concave spherical mirror.

shown in Fig. 11.13 for point A. In this instance the image I is a real image since
light rays pass through image points such as 4’. From the geometry of Fig. 11.13 it
can be shown that if all rays from the object make a small angle with respect to the
axis of the mirror, the distance to the image satisfies the expression
[E8 1 e i
e — 15
5 + ity (11.24)
For the case illustrated, both u and v are positive since both the object and the
image are real. The distance v will be negative when dealing with a virtual image.
With this sign convention, Eq. (11.24) applies to all concave, plane, and convex
mirrors. The ratio of the size of the image to the size of the object is known as the
magnification M and is given by the expression
M=-_ (11.25)
e .
where the minus sign is used to indicate an inverted image. Equation (11.25) also
applies to all concave, plane, and convex mirrors. For example, when Eqgs. (11.24)
and (11.25) are applied to the plane mirror of Fig. 11.12,

V= —u M=1

This indicates a virtual image which is erect and identical in size to the object.

C. Thin Lenses

At least one and often a series combination of lenses is employed in optical
equipment to magnify and focus the image of an object on a photographic plate.
For this reason, the passage of light through a single convex lens and a pair of
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convex lenses in series will be examined in detail. The discussion will be limited to
instances where the thin-lens approximation can be applied; i.e., the thickness of
the lens can be neglected with respect to other distances such as the focal length f
of the lens and the object and image distances u and v.

D. Single-Lens System

The classical optical representation of a single-lens system is shown in Fig. 11.14.
The light from each point on the object can be considered as a spherical wave
which is reflected and refracted at the air-glass interface, as indicated in Sec. 11.3.
In the study of mirrors, the reflected rays are of interest. In the case of lenses, the
refracted rays produce the desired optical effects. From the geometry of Fig. 11.14
it can be shown that the object distance u, the image distance v, and the focal
length f of the lens are related by

1
Wt T @
Similarly the magnification is given by

v

- -2 (v)
Equations (a) and (b) are identical to Egs. (11.24) and (11.25) for mirrors. In the
development of Eq. (a), the assumption was made that all rays from the object
make a small angle with respect to the axis of the lens. The image in Fig. 11.14isa
real image; therefore, the image distance v is positive even though the image is on
the opposite side of the lens from the object. With v positive, Eq. (b) indicates that
the magnification is negative (thus the image 1s inverted, as shown).

The situation illustrated in Fig. 11.14 occurs when the object is located
beyond the focal point of the lens. The object may also be placed between the focal
point and the lens surface, as illustrated in Fig. 11.15. In this case, the distance u is
positive and v is negative since the image formed is virtual. Equation (b) then
yields a positive magnification, which indicates that the image is erect (as shown).

A similar analysis for a concave lens indicates that Eqs. (11.24) and (11.25)

Figure 11.14 Image formation by a
single convex lens (object outside the
focal point).
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In practice, plane-polarized light is produced with an optical element known
as a plane or linear polarizer. Production of circularly polarized light or the more
general elliptically polarized light requires the use of a linear polarizer together
with an optical element known as a wave plate. A brief discussion of linear
polarizers, wave plates, and their series combination follows.

A. Linear or Plane Polarizers [3-5]

When a light wave strikes a plane polarizer, this optical element resolves the wave
into two mutually perpendicular components, as shown in F ig. 11.19. The com-
ponent parallel to the axis of polarization is transmitted while the component
perpendicular to the axis of polarization is either absorbed, as in the case of
Polaroid, or suffers total internal reflection, as in the case of a calcite crystal such
as the Nicol prism.

If the plane polarizer is fixed at some point z,, along the z axis, the equation
for the light vector can be written

2
E = a cos 771 (zo — ct) (a)
Since the initial phase of the wave is not important in the developments which
follow, Eq. (a) can be reduced through the use of Egs. (11.6) and (11.7) to
E = a cos 2nft = a cos wt (11.35)

where w = 2xf is known as the circular frequency of the wave. The absorbed and
transmitted components of the light vector are

E, = a cos wt sin « E, = a cos wt cos o

- where o is the angle between the axis of polarization and the light vector.

L/Axls of polarization

Figure 11.19 Absorbing and transmitting character-
Plane polarizer istics of a plane polarizer.
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In the early days of photoelasticity the production of plane-polarized light
was a difficult problem, and as a consequence a number of methods were
employed, which included reflected light at a 57° angle of incidence, a glass pile,
and the Nicol prism. However, these methods of producing plane-polarized light
have been largely displaced with the advent of Polaroid filters, which have the
advantage of providing a large field of very well polarized light at a telatively low
cost. Most modern polariscopes containing linear polarizers employ Polaroid H
sheet,t a transparent material with stained and oriented molecules. In the manu-
facture of H-type Polaroid films, a thin sheet of polyvinyl alcohol is heated,
stretched, and immediately bonded to a supporting sheet of cellulose acetate
butyrate. The polyvinyl face of the assembly is then stained by a liquid rich in
iodine. The amount of iodine diffused into the sheet determines its quality, and the
Polaroid Corporation produces three grades, denoted according to their transmit-
tance of the light as HN-22, HN-32, and HN-38. Since the quality of a polarizer is
judged by its transmission ratio, HN-22 (with a transmission ratio of the order of
10° at wavelengths normally employed in photoelasticity) is recommended for
photoelastic purposes.

B. Wave Plates [3, 6, 7]

A wave plate has previously been defined as an optical element which has the
ability to resolve a light vector into two orthogonal components and to transmit
the components with different velocities. Such a material has been referred to as
doubly refracting or birefringent. The doubly refracting plate illustrated in
Fig. 11.20 has two principal axes labeled 1 and 2. The transmission of light along
axis 1 proceeds at velocity ¢; and along axis 2 at velocity ¢,. Since ¢, is greater
than c,, axis 1 is often called the fast axis and axis 2 the slow axis.

T Manufactured by the Polaroid Corporation, Cambridge, Mass.

Axis 2
Index of refraction = 7,
Velocity of propagation = ¢y

/ Gignto

£; (Light vector)
o

Axis 1
Index of refraction = ny
Velocity of propagation = ¢

Doubly refracting plate

Figure 11.20 A plane-polarized light vector entering a doubly refracting plate.
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If this doubly refracting plate is placed in a field of plane-polarized light so
that the light vector E, makes an angle § with axis 1 (the fast axis), then upon
entering the plate the light vector is first resolved into two components E,; and E,,
along axes 1 and 2, respectively. The magnitudes of the individual components E,,
and E,, are given by

E,, =E, cos B=a cos a cos wt cos f =k cos wt cos
E,, =E, sin = a cos a cos wt sin f =k cos wt sin f§

where k = a cos a. The light components E,; and E,, travel through the plate with
different velocities ¢, and ¢,, respectively. Because of this velocity difference, the
two components will emerge from the plate at different times. In other words, one
component is retarded in time relative to the other component. This retardation
can be handled most effectively by considering the relative phase shift between the
two components. From Eq. (11.18), the linear phase shifts for components E,, and
E,, with respect to a wave in air can be expressed as

8y =h(ny —n) 8, =h(n, —n)

where n is the index of refraction of air.
The relative linear phase shift is then computed simply as

0=0,—0y =h(n, —ny) (11.36)

The relative angular phase shift A between the two components as they emerge
from the plate (recall from Sec. 11.2 that two mutually perpendicular components
having the same frequency are equivalent to a rotating vector with angular
frequency w) is given by
n 2
Az%&z%h(nz—nl) (11.37)
The relative phase shift A produced by a doubly refracting plate is dependent
upon its thickness h, the wavelength of the light A, and the properties of the plate
as described by n, — n;. When the doubly refracting plate is designed to give an
angular retardation of /2, it is called a quarter-wave plate. Doubly refracting
plates designed to give angular retardations of « and 27 are known as half- and
full-wave plates, respectively. Upon emergence from a general wave plate exhibit-
ing a retardation A, the two components of light are described by the equations

E;; =k cos f cos wt E;, = k sin f§ cos (wt — A) (11.38)

With this representation, only the relative phase shift between components has
been considered. The identical additional phase shift suffered by both components,
as a result of passage through the wave-plate material (as opposed to free space),
has been neglected since it has no effect on the phenomenon being considered.

The magnitude of the light vector which is equivalent to these two compon-
ents can be expressed as

E,=./(E,)? + (E;;)* = k/cos? B cos? wt + sin? B cos? (wt — A) (11.39)
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The angle that the emerging light vector makes with axis 1 (the fast axis) is given
by

; o6y
i e BRI S (11.40)

A cos wt

Thus, it is clear that both the amplitude and the rotation of the emerging light
vector can be controlled by the wave plate. Controlling factors are the relative
phase difference A and the orientation angle . Various combinations of A and
and their influence on the type of polarized light produced will be discussed in the
next section.

Wave plates employed in a photoelastic polariscope may consist of a single
plate of quartz or calcite cut parallel to the optic axis, a single plate of mica, a
sheet of oriented cellophane, or a sheet of oriented polyvinyl alcohol. In recent
years, as the design of the modern polariscope has tended toward a field of
relatively large diameter, most wave plates employed have been fabricated from
oriented sheets of polyvinyl alcohol. These wave plates are manufactured by the
Polaroid Corporation by warming and unidirectionally stretching the sheet. Since
the oriented polyvinyl alcohol sheet is only about 20 um thick (for a quarter-wave
plate), the commercial wave-plate filters are usually laminated between two sheets
of cellulose acetate butyrate.

C. Conditioning of Light by a Series Combination of a Linear Polarizer
and a Wave Plate

The magnitude and direction of the light vector emerging from a series combina-
tion of a linear polarizer and a wave plate are given by Egs. (11.39) and (11.40).
The light emerging from this combination of optical elements is always polarized;
however, the type of polarization may be plane, circular, or elliptical. The factors
which control the type of polarized light produced by this combination are the
relative phase difference A imposed by the wave plate and the orientation angle g.
Three well-defined cases exist.

Case 1: Plane-polarized light 1f the angle f is sct equal to zero and the relative
retardation A is not restricted in any sense, the magnitude and direction of the
emerging light vector are given by Egs. (11.39) and (11.40) as

E, =k cos wt y=0

Since y = 0, the light vector is not rotated as it passes through the wave plate;
hence, the light upon emergence remains plane-polarized. The wave plate in this
instance does not influence the light except to produce a retardation with respect
to a wave in free space which depends on the plate thickness and the index of
refraction associated with the fast axis. Similar results are obtained by letting
p = n/2. Thus

Ei=kcos (ot —A) y=

N
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Case 2: Circularly polarized light 1f a wave plate is selected so that A = m/2, that
is, a quarter-wave plate, and f is set equal to ©/4, the magnitude and direction of
the light vector as it emerges from the plate are given by Eqgs. (11.39) and (11.40)

as
o 3

= cos?wt +sinwt="--k y=ot

2

The light vector described by these expressions has a constant magnitude; there-
fore, the tip of the light vector traces out a circle as it rotates. The vector rotates
with a constant angular velocity in a counterclockwise direction when viewed
from a distant position along the path of propagation of the light beam. Such light
is known as left circularly polarized light. Right circularly polarized light could be
obtained by setting § equal to 3n/4. The light vector would then rotate with a
constant angular velocity in the clockwise direction.

Case 3: Elliptically polarized light 1f a quarter-wave plate (A = 7/2) is selected and
B is permitted to be any angle other than f =nn/4 (n=0, 1, 2, 3, ...), then by
Egs. (11.39) and (11.40), the magnitude and direction of the emerging light vector
are

E; = k/cos® B cos® wt + sin? fsin® wt  tany = tan ftan ot

The light vector described by these expressions has a magnitude which varies with
angular position in such a way that the tip of the light vector traces out an ellipse
as it rotates. The shape and orientation of the ellipse and the direction of rotation
of the light vector are controlled by the angle f.

Consider now the significance of Eq. (11.37) in the production of circularly
polarized light

_ 2nh

A
A

(ny — ny) (1i.37)
Recall that circularly polarized light requires the use of a quarter-wave plate;
therefore, the phase difference A must be 7/2. It is clear that the thickness h can be
determined to give A = n/2 once the plate material, n, — ny, and the wavelength A
of the light are selected. However, a quarter-wave plate suitable for one
wavelength of monochromatic light, i.e., a constant wavelength, will not be suit-
able for a different wavelength. Also, no quarter-wave plate can be designed for
white light since it contains components of different wavelengths.

D. Arrangement of the Optical Elements in a Polariscope [8-12]

Plane polariscope The plane polariscope is the simplest optical system used in
photoelasticity; it consists of two linear polarizers and a light source arranged as
illustrated in Fig. 11.21a.

The linear polarizer nearest the light source is called the polarizer, while the
second linear polarizer is known as the analyzer. In the plane polariscope the two
axes of polarization are always crossed; hence no light is transmitted through the
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Figure 11.21 Arrangement of the optical elements in a plane polariscope and in a circular
polariscope.

analyzer, and this optical system produces a dark field. In operation a photoelastic
model is inserted between the two crossed elements and viewed through the
analyzer. The behavior of the photoelastic model in a plane polariscope will be
covered in Sec. 13.3.

Circular polariscope As the name implies, the circular polariscope employs cir-
cularly polarized light; consequently, the photoelastic apparatus contains four
optical elements and a light source, which is illustrated in Fig. 11.21b.
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Table 11.3 Four arrangements of the optical elements in a circular
polariscope

Arrangement Quarter-wave plates Polarizer and analyzer Field

At Crossed Crossed Dark
B Crossed Parallel Light
€ Parallel Crossed Light
D Parallel Parallel Dark

+ Shown in Fig. 11.21.

The first element following the light source is called the polarizer. It converts
the ordinary light into plane-polarized light. The second element is a quarter-wave
plate set at an angle § = m/4 to the plane of polarization. This first quarter-wave
plate converts the plane-polarized light into circularly polarized light. The second
quarter-wave plate is set with its fast axis parallel to the slow axis of the first
quarter-wave plate. The purpose of this element is to convert the circularly po-
larized light into plane-polarized light, which is again vibrating in the vertical
plane. The last element is the analyzer, with its axis of polarization in the horizon-
tal plane, and its purpose is to extinguish the light. This series of optical elements
constitutes the standard arrangement for a circular polariscope, and it produces a
dark field. Actually, four arrangements of the optical elements in the polariscope
are possible, depending upon whether the polarizers and quarter-wave plates are
crossed or parallel. These four optical arrangements are described in Table 11.3.

Arrangements 4 and B are normally recommended for light- and dark-field
use of the polariscope since a portion of the error introduced by imperfect quarter-
wave plates, ic., both quarter-wave plates differ from /2 by an amount ¢, is
canceled out. Since quarter-wave plates are often of poor quality, this fact is
important to recall in aligning the polariscope.

E. Construction Details of Diffused-Light and Lens-Type Polariscopes
[8-12]

Diffused-light polariscope The arrangement of the optical elements discussed
previously is not sufficiently complete or detailed for the visualization of a work-
ing polariscope. The degree of complexity of a polariscope varies widely with the
investigator and ranges from highly complex lens systems with servomotor drives
on the four optical elements to very simple arrangements with no lenses and no
provision for rotation of any element.

The diffused-light polariscope described here is one of the simplest and least
expensive polariscopes available; yet it can be employed to produce very high
quality photoelastic results. This polariscope requires only one lens; however, its
field can be made very large since its diameter is dependent upon only the size of
the available linear polarizers and quarter-wave plates. Actually, diffused-light
polariscopes with field diameters up to 18 in (450 mm) can readily be constructed.
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Figure 11.22 Design of a circular diffused-light polariscope with both white and monochromatic
light sources: (1) light house (flat-white diffusing paint on interior): (2) monochromatic light
source, sodium street lamp 12 in long, 3 in in diameter, 10,000 Im); (3) white-light source, 300 W
tungsten-filament lamp located on side of light house; (4) diffusing plates, flashed opal glass; (5)
polarizer, glass-laminated Polaroid; (6) first quarter-wave plate, glass-laminated orientated polyvinyl
alcohol; (7) loading frame; (8) second quarter-wave plate, glass-laminated orientated polyvinyl

alcohol; (9) analyzer glass-laminated Polaroid; (10) camera lens, good-quality process lens with about
20- to 24-in focal length; (11) camera for 4 by 5 or 5 by 7 film.

A schematic illustration of the construction details of a diffused-light polari-
scope is shown in Fig. 11.22. A photograph of an 18-in-diameter (450 mm) diffused-
light polariscope is shown in Fig. 11.23.

Lens polariscope In the earlier days of photoelasticity, Nicol prisms (available

only in small diameters) were almost exclusively used as the linear polarizing
elements. Consequently, it was necessary to employ a lens system to expand the

-

Figure 11.23 An 18:in-diameter diﬂ"used-liﬂgﬁt polariscope at IIT Research Institute; note that a
portion of the polariscope has been suspended from the ceiling in order to open the working area
behind the analyzer.
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Figure 11.24 Construction details of a circular lens-type polariscope. (1) Light source (usually a small
mercury arc), (2) color filter, (3) first field lens, (4) polarizer, (5) first quarter-wave plate, (6) loading
frame and model, (7) second quarter-wave plate, (8) analyzer, (9) second field lens, (10) diaphragm
stop, (11) camera lens, (12) camera back.

field of view so that reasonably sized models could be studied. However, with the
advent of high-quality large-diameter sheets of Polaroid, it is no longer necessary
to extend the diameter of the field through the use of a multiple-lens system.
Instead, lens polariscopes should be employed only where parallel light over
the whole field is a necessity. Instances where parallel light is important include
applications where extremely precise definition of the entire model boundary is
critical and where partial mirrors are to be employed in the photoelastic bench
(for fringe sharpening and fringe multiplication).

Several variations of the lens systems are possible. The arrangement shown in
Fig. 11.24 is one of the simplest types that can be employed to obtain parallel
light. The polarizer, quarter-wave plates, and analyzer should be placed in the
parallel beam between the two field lenses to achieve more complete polarization
and to avoid problems associated with internal stresses in the field lenses. A point
source of light is required for parallel light, and this point source is usually
approached by employing a high-intensity mercury lamp with a very short arc.
When a photoelastic model is placed in the field, a slight degree of scattering of the
light occurs, which disturbs the parallelism of the light. To improve the paral-
lelism of the light, it is appropriate to regard the model as the source of illumina-
tion and to control the light as it emerges from the model. The effects of the light
scattered by the model can be minimized by placing a diaphragm stop at the focal
point of the second field lens. As the diameter of the stop is reduced, the paral-
lelism of the light is improved; however, the intensity of the light striking
the camera back is decreased and film exposure times increase.

Comparison of diffused-light and lens polariscopes In this comparison the follow-
ing properties of a photoelastic polariscope will be considered: definition of the
boundaries, direct view of the model, light intensity, length of the unit, operational
characteristics, and cost.

Since a lens polariscope employs a parallel beam of light, the definition of the
image of the model boundaries on the camera back is sharper than that obtainable
with a diffused-light polariscope. However, two precautions can be taken with a
diffused-light polariscope to improve the image of the model boundaries. (1) A
long-focal-length lens should be employed; moreover, it should be stopped down
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as far as possible. Results obtained by employing a lens with a focal length of 24 in
(610 mm) stopped down to f: 45 are quite satisfactory in almost all applications.
(2) If one region of the model is quite important (say a fillet or a hole), this region
should be centered in the field of the polariscope. The width of the boundary
shadow in a diffused-light polariscope is a function of the distance of the boundary
from the centerline of the polarlscope Thus minimizing this distance for critical
regions of the model, minimizes the boundary shadow where it may be
detrimental.

For direct viewing of the model, the diffused-light polariscope is much more
satisfactory than the lens polariscope. In a diffused-light polariscope the fringe
pattern occurring in the model can be viewed by looking directly into the analy-
zer. Moreover, if the analyzer is advanced until it is quite close to the model, the
investigator can load and align the model while viewing the pattern. With a lens
polariscope the model fringe pattern cannot be viewed directly through the analy-
zer; instead, it is necessary to project the image on a ground-glass screen in a
darkened room. This procedure is less suitable for rapid testing than that estab-
lished with a diffusion polariscope.

Light intensity offers little or no difficulty for either polariscope provided they
both are properly designed. High-intensity light sources and relatively fast lenses
can be employed with both polariscopes to hold exposure times well below 1 min
while using relatively slow high-contrast film.

The length of the polariscope is an item to be considered when laboratory
space is limited. A lens polariscope is necessarily long, running from 10 to 15 ft
(3 to 4.5 m), depending primarily upon the diameter of the field and the distance
between the two field lenses. In a diffused-light polariscope the only component
which requires any appreciable length is the camera. If the camera is eliminated,
the system can be designed to occupy a length of less than 1 ft (0.3 m) and the
image can be viewed directly. However, if a camera is required on a diffused-
light polariscope, then a long-focal-length lens is necessary and the length of the
camera will approach or exceed that of a lens polariscope.

The diffused-light polariscope is, in general, easier to operate than a lens
polariscope, as the adjustments required are fewer and less precise. Another very
important advantage of the diffused-light polariscope is that the surface finish of
the model being tested does not require a high degree of polishing. The lens
polariscope, on the other hand, has the advantage of a parallel beam of light which
permits the utilization of partial mirrors for fringe sharpening and fringe multi-
plication. The fact that partial mirrors cannot be employed with a diffused-light
polariscope is a serious disadvantage.

Finally, the cost of a large-field diffused-light polariscope is appreciably less
than that of a large-field lens polariscope. The diffuser plate in a diffused-light
nolariscope has in effect replaced the lens system of a lens polariscope. As a
consequence of the low cost of the diffuser plate in comparison with the expensive
field lenses (i.e., the price of lenses increases roughly as the cube of their diameter),
an appreciable savings in the purchase price of the diffused-light polariscope is
effected.
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11.7 OPTICAL INSTRUMENTS: THE INTERFEROMETER
B0, 3]

An interferometer is an optical device which can be used to measure lengths or
changes in length with great accuracy by means of interference fringes. The
modification of intensity of light by superposition of light waves was defined in
Sec. 11.2 as an interference effect. The intensity of the wave resulting from the
superposition of two waves of equal amplitude was shown by Eq. (11.13) to be a
function of the linear phase difference § between the waves. A fundamental require-
ment for the existence of well-defined interference fringes is that the light waves
producing the fringes have a sharply defined phase difference which remains
constant with time. When light beams from two independent sources are super-
imposed, interference fringes are not observed since the phase difference between
the beams varies in a random way (the beams are incoherent). Two beams from
the same source, on the other hand, interfere, since the individual wavetrains in
the two beams have the same phase initially (the beams are coherent) and any
difference in phase at the point of superposition results solely from differences in
optical paths. Here optical-path length is defined as

L, (a)

where L; is the mechanical-path length in a material having an index of refraction
n;.

The concept of optical-path difference and its effect on the production of
interference fringes can be illustrated by considering the reflection and refraction
of light rays from a transparent plate having a thickness &, as shown in Fig. 11.25.
Consider a plane wavefront associated with the light ray 4 which strikes the plate
at an angle of incidence o. Ray B results from reflection at the front surface of the
plate and, as discussed in Sec. 11.3, suffers a phase change of 4/2. A second ray is
refracted at the front surface, reflected at the back surface, and refracted from the
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Figure 11.25 Reflection and refraction of light rays from a transparent plate (n, > ny).
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front surface before emerging from the front surface of the plate as ray C. The
optical-path difference between rays B and C can be computed as

o= —2h n 2 sin y si
e o, Y
But from Eq. (11.20)
sin o = n,; sin y
2h 2h
theref D= — in? y = 2hn,, :
erefore o yn21 = Nyq SIN° 9 = 2hn,; cos y (11.41)

Since ray B suffered a phase change of 4/2 on reflection, rays B and C will interfere
destructively (produce minimum intensity or extinction when brought together)
whenever

0 =mn m— Q03

If the light beam illuminates an extended area of the plate, and if the thickness of
the plate varies slightly with position, the locus of points experiencing the same
order of extinction will combine to form an interference fringe. The fringe spacings
will represent thickness variations of approximately 7 uin or 180 nm (in glass with
mercury light and a small angle y).

Rays emerging from the back surface of the plate can also be used to produce
interference effects. In Fig. 11.25, a third ray is refracted at both the front and back
surfaces of the plate before emerging as ray D. A fourth ray undergoes two internal
reflections before being refracted from the back surface of the plate as ray E. The
optical-path difference between rays D and E is identical to the difference between
rays B and C as given by Eq. (11.41). Since neither ray D nor E suffers a phase

change on reflection, the two rays will interfere destructively when brought
together whenever

d=02m+1) =018 = .

N >

The previous discussion serves to illustrate the principles associated with
measurements employing interference effects. For the system illustrated in
Fig. 11.25, the optical-path difference § would be many wavelengths (m — oo).
Such a system would involve high-order interference; therefore, it would require
extreme coherence and long wavetrains such as those provided by a laser for
successful operation. Other systems which utilize low-order interference (m=0,1,
2, 3) place less stringent requirements on the light source. Two low-order systems
used in experimental stress analysis work are the Mach-Zehnder interferometer
and the series interferometer.

A. Mach-Zehnder Interferometer

The essential features of a Mach-Zehnder interferometer are illustrated in
Fig. 11.26. The light beam from a source is divided into a reference beam and an
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Figure 11.26 Light paths through a Mach-Zehnder interferometer.

active beam with a beam splitter (partial mirror). The beams are recombined after
the active beam passes through the specimen of interest. Low-order interference
can be obtained by inserting a compensating specimen in the reference beam to
adjust for the difference in index of refraction between the specimen material and
air.

B. Series Interferometer [13]

The essential features of the series interferometer are illustrated in Fig. 11.27. This
instrument, developed by Post [13], is a relatively simple and stable instrument
with a large field. It is well suited for photoelasticity applications. The series
interferometer utilizes three partial mirrors in series. A fraction of the incident
light is reflected and a fraction is transmitted at each of the mirrors. One portion
of the light is transmitted directly through the mirrors, as depicted by ray A4 in
Fig. 11.27. Other portions (see rays B and C ) are characterized by only two
reflections. A majority of the light, however, undergoes a variety of multiple
reflections, as illustrated by ray D. When the optical path [, is nearly equal to the
optical path [,, rays which traverse paths similar to B and C interfere construc-
tively and destructively to form an interference fringe pattern. This low-order
fringe pattern gives the difference between [y and [, at any point in the field.
Superimposed on this pattern is a uniform background intensity due to all the
other rays transmitted through the three series mirrors. When a specimen is
placed in the field between mirrors 1 and 2 and the optical path [, is adjusted to
approximately equal I;, a fringe pattern related to thickness variations in the
model is obtained.
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EXERCISES

11.1 Verify Eqgs. (11.11) and (11.12).
11.2 The wavelength of light from a helium-neon laser is 632.8 nm. Determine:

(a) The frequency of this light

(b) The wavelength of this light in a glass plate (n = 1.522)

(c) The velocity of propagation in the glass plate

(d) The linear phase shift (in terms of wavelength in free space) after the light has passed through
a 25-mm-thick glass plate
I1.3 A plate of glass having an index of refraction of 1.57 with respect to air is to be used as a polarizer.
Determine the polarizing angle and the angle of refraction of the transmitted ray.

11.4 Unpolarized light is directed onto a plane glass surface (n = 1.57) at an angle of incidence of 50°.
Determine reflection coefficients associated with the parallel and perpendicular components of the
reflected beam.

115 A light source is located 15 m below the surface of a body of water (n = 1.33). Determine the
maximum distance (measured from a point directly above the source) at which the source will be
visible from the air side of the air-water interface.

11.6 A ray of monochromatic light is directed at oblique incidence onto the surface of a glass plate.
The ray emerges from the opposite side of the plate in a direction parallel to its initial direction but
with a transverse displacement. Develop an expression for this transverse displacement in terms of the
plate thickness h, the index of refraction of the glass n, and the angle of incidence « of the light beam.
11.7 The radius of a concave spherical mirror is 1000 mm. An object is located 1500 mm from the
mirror. Determine the image location and the magnification. Show the results on a sketch similar to
Figi 11.13.

11.8 Solve Exercise 11.7 if the object is located 750 mm from the mirror.

11.9 Solve Exercise 11.7 if the object is located 200 mm from the mirror.

11.10 A concave mirror will be used to focus the image of an object onto a screen 1.50 m from the
object. If a magnification of —2 is required, what radius of curvature must the mirror have?

11.11 Determine the image location and the magnification for an object located 750 mm from a mirror
if the mirror is (a) a plane mirror and (b) a convex mirror with a radius of curvature of 1000 mm.
1112 A convex mirror has a radius of curvature of 2500 mm. Determine the magnification and the
image location for an object located 500 mm from the mirror. Show the results on a sketch similar to
Eig: 11:13.

11.13 A thin convex lens has a focal length of 600 mm. An object is located 1200 mm to the left of the

lens. Determine the image location and the magnification. Show the results on a sketch similar to
Fig. 11.14.



