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THIRTEEN

THEORY OF PHOTOELASTICITY

13.1 INTRODUCTION

In Chap. 11, the working optical instrument of photoelasticity, a polariscope, was
described in detail. The purpose of this chapter is to discuss the theory of photo-
elasticity, ie., what happens in the polariscope when a photoelastic model is
placed in the field and loaded. This discussion will be kept as simple as possible,
yet it will be sufficiently complete to describe most of the photoelastic effects that
can be observed in a transmission polariscope.

132 TEMPORARY DOUBLE REFRACTION [1-3]

Many transparent noncrystalline materials that are optically isotropic when free
of stress become optically anisotropic and display characteristics similar to cry-
stals when they are stressed. These characteristics persist while loads on the mate-
rial are maintained but disappear when the loads are removed. This behavior,
known as temporary double refraction, was first observed by Sir David Brewster in
1816. The method of photoelasticity is based on this physical behavior of trans-
parent noncrystalline materials.

In Chap. 1 it was shown that at least three mutually perpendicular planes,
which are free of shear stress, exist at each point of a loaded body. These planes
were defined as principal planes and the normal stresses acting on them were
defined as the principal stresses oy, 0,, and g5. In general, the three principal
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Figure 13.1 The stress ellipsoid.

stresses at a point have different magnitudes. The resultant stress T, on any plane
through the point can be expressed in terms of the three principal stresses at the
point and the direction cosines associated with the plane by means of Egs. (115),
Normal and shear stresses on the plane for a particular set of coordinate direc-
tions can be obtained from Egs. (1.16).

A geometric representation that provides considerable physical insight into
the nature of the state of stress at a point is known as the stress ellipsoid or the
ellipsoid of Lamé. An equation for this stress ellipsoid, shown in Fig. 13.1, is
obtained by solving Egs. (1.15) for the direction cosines and adding the sum of the
squares to obtain

.~ T2

ny nz=1 i
P i (13.1)

Each radius of this ellipsoid represents the magnitude of the resultant stress T, on
some plane through the point. Since Egs. (1.15) were expressed in terms of the
principal directions, the semiaxes of the ellipsoid represent the magnitudes of the
principal stresses at the point. The particular plane associated with an arbitrary
radius must be determined by some auxiliary construction such as the stress-
director surface [2, p. 65].

The intersection of an arbitrary plane through the origin with the surface of
the stress ellipsoid is an ellipse. On planes through the point which have normals
along one of the semiaxes of the ellipse, the resultant stress can be resolved into a
normal component and a shear component in a direction perpendicular to the
plane of the ellipse. The shear stress component in a direction parallel to the plane
of the ellipse is zero. The normal stress component on such a plane is known as a
secondary principal stress. Later it will be shown that the optical response of a
doubly refracting material for light passage at normal incidence to the plane of the
ellipse is not affected by the presence of this shear stress component or by the
norinal stress component in a direction perpendicular to the plane of the ellipse.
Secondary principal stresses play an important role in three-dimensional pho-
toelasticity studies. -

The optical anisotropy (temporary double refraction) which develops in a
material as a result of stress can also be represented by an ellipsoid, known in this
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2 Figure 13.2 The index ellipsoid.

case as the index ellipsoid. The semiaxes of the index ellipsoid represent the princi-
pal indices of refraction of the material at the point, as shown in Fig. 13.2. Any
radius of the ellipsoid represents a direction of light propagation through the
point. A plane through the origin, which is perpendicular to the radius, intersects
the ellipsoid as an ellipse. The semiaxes of the ellipse represent the indices of
refraction associated with light waves having planes of vibration which contain
the radius vector and an axis of the ellipse. For a material which is optically
isotropic, the three principal indices of refraction are equal, and the index ellipsoid
becomes a sphere. The index of refraction is then the same for all directions of
light propagation through the material.

The similarities which exist between the stress-ellipsoid representation of the
state of stress at a point in a loaded body and the index-ellipsoid representation of
the optical properties of a material exhibiting temporary double refraction suggest
the presence of a relationship between the two quantities which may form the
basis for an experimental determination of stresses (or strains). The relationship is
known as the stress-optic law.

133 THE STRESS-OPTIC LAW [3-7]

The theory which relates changes in the indices of refraction of a material exhibit-
ing temporary double refraction to the state of stress in the material is due to
Maxwell, who reported the phenomenon in 1853. Maxwell noted that the changes
in the indices of refraction were linearly proportional to the loads (thus to the
stresses or strains for a linearly elastic material) and followed the relationships
n1 = no = CIO—I + 62(0'2 ‘f— 0'3)
Ny —No =10, + ¢3(03 + 04)

I’l3 = no = Cl 0-3 + C2(O'1 + 0—2) (13.2)
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where 04, 0,, 03 = principal stresses at point
no = index of refraction of material in unstressed state
ny, ny, ny = indices of refraction of material in stressed state associated
with principal stress directions (principal indices of refraction)
¢1, ¢, = constants known as stress-optic coefficients
Equations (13.2) are the fundamental relationships between stress and optical
effect and are known as the stress-optic law. These equations indicate that the
complete state of stress at a point can be determined by measuring the three
principal indices of refraction and establishing the directions of the three principal
optical axes. Since the measurements are extremely difficult to make in the three-
dimensional case, practical application has been limited to cases of plane stress
(63 = 0). For plane-stress situations, Egs. (13.2) reduce to

Ry —Np=C101 + Cy0, Ny — Ny =¢10, + c,04 (13.3)

Favre [6] has used a Mach-Zender interferometer and Post [7] has used a series
interferometer to make measurements of absolute retardations. Such measure-
ments permitted direct determination of the individual principal stresses at inter-
ior points of a loaded two-dimensional model. Measurements with an
interferometer can be very precise, but they are difficult and time-consuming. For
this reason, absolute-retardation methods are seldom used, while the method of
photoelasticity, which utilizes relative retardations, enjoys wide application.

13.4 THE STRESS-OPTIC LAW IN TERMS OF RELATIVE
RETARDATION [3, 8-15]

Equations (13.2) provide the changes in index of refraction experienced by a
material exhibiting temporary double refraction as the result of an applied state of
stress. In the previous section, it was indicated that these absolute changes in
index of refraction can be used as the basis for a stress-measurement method. The
more widely used method of photoelasticity, however, makes use of relative rather
than absolute changes in index of refraction. For example, consider the equations
obtained by eliminating n, from Egs. (13.2):

ny —ny = (c; — ¢1)o; — 0;) = c(oy — 0,)

ny — Ry = (c; — ¢4)(05 — 05) = (o, — a3)

i — Ny — (Cz—cl)(as_al)zc(as—al) (13.4)
where ¢ = ¢, — ¢, is the relative stress-optic coefficient expressed in terms of
brewsters (1 brewster = 107! cm?/dyn = 10712 m2/N = 6.895 x 10~° in?/Ib).
Materials exhibiting temporary double refraction may display the properties of
either positive or negative crystals. In a positive crystal like quartz, the extraordin-

ary index of refraction n, is greater than the ordinary index n,. In a negative
crystal like calcite the opposite is true. Photoelastic materials are considered to
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exhibit positive birefringence when the velocity of propagation of the light wave
associated with the principal stress ¢, is greater than the velocity of the wave
associated with the principal stress ¢,. Since the principal stresses are ordered
such that ¢, > ¢, > g5, the principal indices of refraction of a positive doubly
refracting material can be ordered such that n, > n, 2 ny. The form of Egs. (13.4)
has been selected to make the relative stress-optic coefficient ¢ a positive constant.

Since a stressed photoelastic model behaves like a temporary wave plate,
Eq. (11.37) can be used to relate the relative angular phase shift A (or-relative
retardation) to changes in the indices of refraction in the material resulting from
the stresses. For example, consider a slice of material (thickness h) oriented per-
pendicular to one of the principal-stress directions at the point of interest in the
model. If a beam of plane-polarized light is passed through the slice at normal
incidence, the relative retardation A accumulated along each of the principal-
stress directions can be obtained by substituting Eq. (11.37) in turn into each of
Egs. (13.4). Thus

2nhe 2nthe 21the
—‘(01—0'2) A23=—T(02—03) Ay = 7 (‘73—01)

(13.5)

where A;, is the magnitude of the relative angular phase shift (relative retarda-
tion) developed between components of a light beam propagating in the ¢, direc-
tion. The two components of the beam would have electric vectors oriented in the
o1 and o, directions. The component associated with the principal stress ¢, would
propagate at a higher velocity than the one associated with the stress o, (since
01 > 0,) if the material exhibits positive birefringence. Similar meanings can be
attached to the retardations A,, and Asq.

Equations (13.5) express the stress-optic law as it is commonly applied in
photoelasticity. The relative retardation A is linearly proportional to the differ-
ence between the two principal stresses having directions perpendicular to the
path of propagation of the light beam. The third principal stress, having a direc-
tion parallel to the path of propagation of the light beam, has no effect on the
relative retardation. Also, the relative retardation A is linearly proportional to
the model or slice thickness 4 and inversely proportional to the wavelength A of
the light being used.

The relative stress-optic coefficient ¢ is usually assumed to be a material
constant that is independent of the wavelength of the light being used. A study by
‘Vandaele-Dossche and van Geen [13] has shown, however, that this coefficient
may depend on wavelength in some cases as the model material passes from the
elastic to the plastic state. The dependence of the relative stress-optic coefficient ¢
on the wavelength of the light being used is referred to as phoroelastic dispersion or
dispersion of birefringence.

From an analysis of the general three-dimensional state of stress at a point, as
represented by the stress ellipsoid, and from an analysis of the change in index of
refraction with direction of light propagation in the stressed material, as repre-
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sented by the index ellipsoid, it can be shown that Egs. (13.5) apply not only for
principal stresses but also for secondary principal stresses. Thus

e

ey

(¢, = o3) (13.6)
where ¢} and o/, are secondary principal stresses (¢; > o)) at the point of interest
in directions perpendicular to the path of propagation of the light beam. The
stress-optic law in terms of secondary principal stresses is widely used in three-
dimensional photoelasticity work.

For two-dimensional or plane-stress problems, where one of the principal
stresses is zero (say o5 = 0), the stress-optic law in terms of the nonzero principal
stresses and for light at normal incidence to the plane of the model can be written
without the subscripts on the retardation simply as

_ 2nhe
By

A (61— 0,) (13.7)

Here it is understood that ¢, and 0, are the in-plane principal stresses and that g,
is greater than ¢, but not greater than o3 = 0 if both in-plane stresses are
compressive.

Since brewsters are not commonly employed in engineering practice,
Eq. (13.7) is frequently expressed in the following form for practical work:

N .
61— 0, = f% Ib/in® or N/m? (13.8)
where N = o dimensionless (13.9)
T

is the relative retardation in terms of a complete cycle of retardation,
A .
e > Ib/in or N/m (13.10)F

is a property of the model material for a given wavelength of light known as the
material fringe value, and h is the model thickness in inches or meters.

It is immediately apparent from Eq. (13.8) that the stress difference 0, —0,1n
a two-dimensional model can be determined if the relative retardation N can be
measured and if the material fringe value /s can be established by means of
calibration. Actually, the function of the polariscope is to determine the value of N
at each point in the model.

If a photoelastic model exhibits a perfectly linear elastic behavior, the differ-
ence in the principal strains ¢, — €; can also be measured by establishing the

T Often Eq. (13.8) is written as 7 = (04 — 0,)/2 = Nf, /h, where f; is the material fringe value in
terms of shear and is equal to one-half the f, value defined here.
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Figure 13.5 Components of the light
vectors which are transmitted through
the analyzer of a plane polariscope.

Thus, the waves upon emerging from the model can be expressed as

Ey =kcosacos (wt —A;)  Ej=ksin«cos (wf — A,) (c)
2nh 2rth
where Ay :%(n1 —1) Ay = %(n2 - 1)

After leaving the model, the two components continue to propagate without
further change and enter the analyzer in the manner shown in F ig. 13.5. The light
components E'y and Ej are resolved when they enter the analyzer into horizontal
components E7 and E and into vertical components. Since the vertical compon-
ents are internally absorbed in the analyzer, they have not been shown in
Fig. 13.5.

The horizontal components transmitted by the analyzer combine to produce
an emerging light vector E,_, which is given by

E,.=E; —E]=FE), cos o — E} sin « (d)
Substituting Egs. (c) into (d) yields
Eu = k sin « cos afcos (wt — A,) — cos (wt — A,)]

= k sin 2« sin usin (wt = A2+A1) (13.14)
2 2
It is interesting to note in Eq. (13.14) that the average angular phase shift
(A, + A,)/2 affects the phase of the light wave emerging from the analyzer but not
the amplitude (coefficient of the time-dependent term). Thus, it has no influence
on the intensity (intensity is proportional to the square of the amplitude) of the
light emerging from the analyzer but serves only to change the phase of the
emerging wave with respect to the phase of the initial wave. The relative retarda-
tion A = A, — A, however, appears in the amplitude of the wave; therefore, it is
one of the factors which controls the intensity of light emerging from the analyzer.
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Since the average angular phase shift (A, + A1)/2 has no effect on the intensity, it
does not contribute to the optical patterns observed in a photoelastic model. In
future photoelasticity developments only relative retardations will be considered
in order to simplify the analysis.

Since the intensity of light is proportional to the square of the amplitude of
the light wave, the light emerging from the analyzer of a plane polariscope is given
by

A
I = K sin® 2 sin? 3 (13.15)
2mh 2nh
where A=A2~A1=%(n2—n1): i)

Examination of Eq. (13.15) indicates that extinction (I = 0) occurs either
when sin 24 = 0 or when sin? (A/2) = 0. Thus, one of the conditions for extinc-
tion is related to the principal-stress directions and the other is related to the
principal-stress difference.

A. Effect of Principal-Stress Directions

When 24 = nr, where n =0, 1, 2, ..., sin? 2a = 0 and extinction occurs. In other
words, when one of the principal-stress directions coincides with the axis of the
polarizer (x = 0, 7/2, or any exact multiple of n/2), the intensity of the light is zero.
Since the analysis of the optical effects produced by a stressed model in a plane
polariscope was conducted for an arbitrary point in the model, the analysis is
valid for all points of the model. When the entire model is viewed in the polari-
scope, a fringe pattern is observed; the fringes are loci of points where the
principal-stress directions (either o, or ¢,) coincide with the axis of the polarizer.
The fringe pattern produced by the sin® 2« term in Eq. (13.15) is known as an
isoclinic fringe pattern. Isoclinic fringe patterns are used to determine the
principal-stress directions at all points of a photoelastic model. Since isoclinics
represent a very important segment of the data obtained from a photoelastic
model, the topic of isoclinic-fringe-pattern interpretation will be treated in more
detail in Sec. 14.3.

B. Effect of Principal-Stress Difference

When A/2 = nr, where n =0, 1, 2, 3, ..., sin? (A/2) = 0 and extinction occurs. In
other words, when the principal-stress difference is either zero (n = 0) or sufficient
to produce an integral number of wavelengths of retardation (=323 oo-)the
intensity of light emerging from the analyzer is zero. When a complete model is
viewed in the polariscope, this second condition for extinction yields a second
fringe pattern where the fringes are loci of points exhibiting the same order of
extinction (n = 0, 1,2, 3, ...). The fringe pattern produced by the sin? (A/2) term in
Eq. (13.15) is known as an isochromatic fringe pattern. The nature of the optical

il
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effect producing the isochromatic fringe pattern requires some additional
discussion.
Recall from Eq. (13.7) that the relative retardation A may be expressed as

0} 2mthe

A 7 (01— 02)
A he
Thus o e (61— 03) (e)

Examination of Eq. (e) indicates that the order of extinction n depends on both
the principal-stress difference ¢; — ¢, and the wavelength 1 of the light being
used. Thus, for a given principal-stress difference, the order of extinction n can be
an integer only for light of a single wavelength (monochromatic light). When a
model is viewed in monochromatic light, the isochromatic fringe pattern appears
as a series of dark bands since the intensity of light is zero whenn =10, 1,2,3, ....
When a model is viewed with white light (all wavelengths of the visible spectrum
present), the isochromatic fringe pattern appears as a series of colored bands. The
intensity of light is zero, and a black fringe appears only when the principal-stress
difference is zero and a zero order of extinction occurs for all wavelengths of light.
No other region of zero intensity is possible since the principal-stress difference
required to produce a given order of extinction is different for each of the
wavelengths. Thus, not all the wavelengths can be extinguished simultaneously to
produce a condition of zero intensity. The various colored bands form in regions
where the principal-stress difference is sufficient to produce extinction of a particu-
lar wavelength of the white light. For example, when the principal-stress difference
is sufficient to produce extinction of the green wavelengths, the complementary
color, red, appears as the isochromatic fringe. At the higher levels of principal-
stress difference, where several wavelengths of light can be extinguished simultan-
eously, e.g., second order red and third order violet, the isochromatic fringes
become pale and very difficult to identify; therefore, they are seldom used for
stress analysis work.

With monochromatic light, the individual fringes in an isochromatic-fringe
pattern remain sharp and clear to very high orders of extinction. Since the
wavelength of the light is fixed, Eq. (¢) can be written in terms of the material
fringe value f, and the isochromatic fringe order N as

h
n—N——f—;’(O'l—Uz) (f)

Hence, the number of fringes appearing in an isochromatic fringe pattern is con-
trolled by the magnitude of the principal-stress difference 0; — o, by the thickness
h of the model, and by the sensitivity of the photoelastic material, as denoted by
the material fringe value f;.

In general, the principal-stress difference o, — o, and the principal-stress dir-
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Figure 13.6 Superimposed isochromatic and isoclinic fringe patterns for a ring loaded in diametral
compression.

ections vary from point to point in a photoelastic model. As a result, the isoclinic
fringe pattern and the isochromatic fringe pattern are superimposed, as shown in
Fig. 13.6, when the model is viewed in a plane polariscope. Separation of the
patterns requires special techniques which will be discussed later.

Theoretically, the isoclinic and isochromatic fringes should be lines of zero
width; however, the photograph in Fig. 13.6 shows the fringes as bands with
considerable width. Also, direct visual examination of the fringe pattern in a
polariscope will show again that the fringes are bands and not lines. In both
instances, the width of the fringes is due to the recording characteristics of the eye
and the photographic film and not to inaccuracies in the previous development. If
the intensity of light emerging from the analyzer is measured with a suitable
photoelectric cell, a minimum intensity is recorded at some point near the center
of the fringe which coincides with the exact extinction line.
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C. Frequency Response of a Polariscope

The circular frequency w for light in the visible spectrum is approximately
10'° rad/s. As a result, neither the eye nor any type of existing high-speed photo-
graphic equipment can detect the periodic extinction associated with the ot term
of the expression for the light wave, To date, no dynamic-stress problem has been
attempted where the frequency response of the polariscope has proved
inadequate. Instead, the problems encountered are associated with loading the
model, recording the fringe pattern, and selecting a suitable model material.

13.6 EFFECTS OF A STRESSED MODEL IN A CIRCULAR
POLARISCOPE (DARK FIELD, ARRANGEMENT A)
[3, 8-12, 16, 17]

When a stressed photoelastic model is placed in the field of a circular polariscope
with its normal coincident with the z axis of the polariscope, the optical effects
differ somewhat from those obtained in a plane polariscope. The use of a circular
polariscope eliminates the isoclinic fringe pattern while it maintains the isochro-
matic fringe pattern, and as a result the circular polariscope is more widely used
than the plane polariscope. To illustrate this effect, consider the stressed model in
the circular polariscope (arrangement A) shown in Fig. 13.7.

P Axis of
polarization

Light
source

Polarizer
T2

First quarter-wave plate

Stressed model

Second quarter-wave plate

Axis of
polarization

Analyzer

Figure 13.7 A stressed photoelastic model in a circular polariscope (arrangement A, crossed polarizer
and analyzer, crossed quarter-wave plates).
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The plane-polarized light beam emerging from the polarizer can be repre-
sented by the same simple expression used for the plane polariscope, namely,

E., = k cos wt (a)

As the light enters the first quarter-wave plate, it is resolved into components E ;
and E, with vibrations parallel to-the fast and slow axes, respectively. Since the
axes of the quarter-wave plate are oriented at 45° with respect to the axis of the
polarizer,

2 )
Efz\ékcoswt E5={kcoswt
As the components propagate through the plate, they develop a relative angular

phase shift A = 7/2; therefore, the components emerging from the plate can be
expressed as

E}z%kcoswt E;=\/72kcos (cut—;)z\ézksinwt (b)

It has previously been shown that these two plane-polarized beams represent

circularly polarized light with the light vector rotating counterclockwise at any

point along the axis of propagation of the light between the quarter-wave plate
and the model.

After leaving the quarter-wave plate, the components enter the model in the

manner illustrated in Fig. 13.8. Since the stressed model exhibits the character-

} Axis of polarizer

Slow axis

(First quarter-wave plate) FostiGxis

(First quarter-wave plate)

Figure 13.8 Resolution of the light components as they enter the stressed model.
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istics of a temporary wave plate, the components E'; and E; are resolved into
components E; and E,, which have directions of vibration parallel to the
principal-stress directions in the model. Thus

; 7 (T
E, =E} cos(z—a)+Es sm(z—-cx)

U 7-[ ’ s n
E,=E. cos(z—cx)—Ef s1n(4—oc) (c)

Substituting Egs. (b) into (c) yields

E*l/jrk t £ +sinorsin [T —a
et CoS W cosz a sin wt s 4

7
=chos(wz+a—2)

2
E—\/zk i t co 4 (6 tinE
ey sin wt cos T 0s Wt s 7
—ﬂksin s L
e HBAC By

The two components E; and E, propagate through the model with different
velocities. The additional relative retardation A accumulated during passage
through the model is given by Eq. (13.7) as

o 2mhe
o]

A

(0 —0,)
Thus the waves upon emerging from the plate can be expressed as

e n
El—zkcos(wt+a—4)

7= T
E;:\/Tksm(cot+oc—Z—A) (d)

The light emerging from the model propagates to the second quarter-wave
plate and enters it according to the diagram shown in Fig. 13.9. The components
associated with the fast and slow axes of the second quarter-wave plate are

| T ‘ i
E,=E] s1n(4—oc)+Ez cos(4~oc)

; T R
E.=—E| 005(4—oc)—E2s1n(4—a) (e)
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A Axis of polarizer

R
Fast axis 5 Slow axis o
7

Second quarter-wave plate & Second quarter-wavé plate
N

Second quarter-wave
plate

Figure 13.9 Resolution of the light components as they enter the second quarter-wave plate.

Substituting Egs. (d) into (e) yields

2 o\ o ! n n
Ef—2k[cos(wt-i—a—z)sm(i—a)+sm(wt+oc—4—A)cos(4—oc)]
E—i/gk cos [t + & — =) cos |Z — a| — sin feor + & — & — A} sin [
=5 o) ] Rl b wt + o i SIn {7 —

As the light passes through the second quarter-wave plate, a relative phase shift of
A = n/2 develops between the fast and slow components. Thus the waves emerg-
ing from the plate can be expressed as

el ThiW T : n n
Ef~2k[cos(wt+oc—i)sm(4—oc)+sm(wt+o¢—4—A)cos(4—a”
E/—\/jk i L+ z 2 +cos ot + o — " — Alsin ("
=5 ksm o o — o Jeoslorraliaiaon b s = e

(13.16)

Finally, the light enters the analyzer, as shown in Fig. 13.10. The vertical
components of E’ and E; are absorbed in the analyzer while the horizontal
components are transmitted to give

£. -2 -5) )
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Axis of polarizer

Fast axis

Second quarter-wave plate Slow axis_~

Second quarter-wave plate

Axis of
analyzer

Analyzer

Figure 13.10 Components of the light vectors which are transmitted through the analyzer (dark
field).

Substituting Egs. (13.16) into Eq. (f) gives an expression for the light emerging
from the analyzer of a circular polariscope (arrangement A). Thus

/o) ——E i bl = os 2 - + cos | wr + —E—A sin E—oc
ax =5 (SN |0 + o 45 i wt + o 4 1
ot + o — " |sin [* i t+ T Aeos [ s
Cos {4+ o 4 sin i o Sin (| o o 4 4

L A A
=k sin - sin (wt+2a 2) (13.17)

Since the intensity of light is proportional to the square of the amplitude of
the light wave, the light emerging from the analyzer of a circular polariscope
(arrangement A) is given by

[—K sinzg (13.18)

Inspection of Eq. (13.18) indicates that the intensity of the light beam emerging
from the circular polariscope is a function only of the principal-stress difference
since the angle « does not appear in the amplitude of the wave. This indicates that
isoclinics have been eliminated from the fringe pattern observed with the circular
polariscope. From the sin? (A/2) term in Eq. (13.18) it is clear that extinction will
occur when A/2 = nr, where n =0, 1, 2, 3, .... This type of extinction is identical
with that previously described for the plane polariscope and referred to as an
isochromatic fringe pattern. An example of this fringe pattern is shown in
Fig. 13.11.
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Figure 13.11 Dark-field isochromatic fringe pattern of a ring loaded in diametral compression.

13.7 EFFECTS OF A STRESSED MODEL IN A CIRCULAR
POLARISCOPE (LIGHT FIELD, ARRANGEMENT B)
[3, 8-12, 16, 17] :

A circular polariscope is usually employed with both the dark- and light-field
arrangements (4 and B). The circular polariscope can be converted from dark
field (arrangement A4) to light field (arrangement B) simply by rotating the analy-
zer through 90°. The advantage of employing both light- and dark-field arrange-
ments is that twice as many data are obtained for the whole-field determination of
01 — 0,. Recall from Secs. 13.5 and 13.6 that the order of the fringes N coincides
with n for the plane polariscope and for the dark-field circular polariscope; there-
fore, the fringes are counted in the sequence 0, 1, 2, 3, .... With the light-field
arrangement of the circular polariscope, N and n do not coincide. Instead,
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Axis of polarizer
M Axis of analyzer

Fast axis | Loy Slow axis _~~
Second quarter-wave plate Second quarter-wave plate

Analyzer

Figure 13.12 Components of the light vectors which are transmitted through the analyzer (light
field).

N =1 + n. Hence, with the light-field arrangement, the orders of the fringes are
counted 1, 13,24 31 ...

To establish the effect of a stressed model in a light-field circular polariscope,
it is only necessary to consider the light components emerging from the second
quarter-wave plate as represented by Egs. (13.16) and the analyzer in its new
position as indicated in Fig. 13.12. Since the axis of the analyzer is oriented in the
vertical direction, the horizontal components of E’; and E; will be absorbed while
the vertical components will be transmitted as the light propagates through the
analyzer. Thus, the emerging light vector, which lies in a vertical plane, can be
expressed as

B =2 (E1+ ) @

Substituting Egs. (13.16) into Eq. (a) yields
HE—

k S n T - T EELT

251 w o 4cos 4 o] + cos|wt + o 21 Sin i o

+ cos ’wt+ N sin E—oz + sin{wt + —E—Ac A
o i 4 R wt + o 1 0S 2 o

=kc Ain t 5 13.19
=k cos 5 sin|wt =5 (13.19)

Since the intensity of light is proportional to the square of the amplitude of
the light wave, the light emerging from the analyzer of a circular polariscope
(arrangement B) is given by

A
I = K cos? 5 (13.20)
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Equation (13.20) shows that extinction (I = 0) will occur when
ATl n

2200
or from Eq. (13.9) when

n forn—0.1,23

A
e 2 2 t

Wthh implies that the order of the first fringe observed in a light-field polariscope
is 3, which corresponds to n = 0. An example of a light-field isochromatic fringe
pattern is presented in Fig. 13.13.

By using the circular polariscope with both light- and dark-field arrange-
ments, it is possible to obtain two photographs of the resulting isochromatic fringe
patterns. The data thus obtained will give a whole-field representation of the order

Figure 13.13 Light-field isochromatic fringe pattern of a ring loaded in diametral compression.
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of the fringes to the nearest 3 order. Interpolation between fringes often permits an
estimate of the order of the fringes to +0.1, which results in accuracies for the
. principal-stress difference of +0.1f, /h. If more accurate determinations are neces-
sary, the refined fringe-analysis techniques described in the following section can
be used.

13.8 EFFECTS OF A STRESSED MODEL IN A CIRCULAR
POLARISCOPE (ARBITRARY ANALYZER POSITION,
TARDY COMPENSATION) [18-24]

The analysis presented in the previous two sections for the dark- and light-field
arrangements of the circular polariscope can be carried one step further to include
rotztion of the analyzer through some arbitrary angle. The purpose of such a
rotation is to provide a means for determining fractional fringe orders.

In the previous three sections, the optical effects produced by a stressed model
in both plane and circular polariscopes were studied by using a trigonometric
representation of the light wave. For more complicated situations, the derivations
with this representation quickly become an exercise in the manipulation of trigon-
ometric identities and very little of the physical significance of the problem is
retained. Under such circumstances, an exponential representation of the light
wave can be used to simplify the derivations; therefore, it will be used in all future
developments.

Consider first the passage of light through the optical elements of a circular
polariscope (arrangement 4). With the exponential representation, the light wave
emerging from the polarizer can be expressed as

B (a)

by
As the light enters the first quarter-wave plate, it is resolved into components with
vibrations parallel to the fast and slow axes of the plate. The components develop
a phase shift A = n/2 as they propagate through the plate and emerge as

2 - o
Elfzikelmt E;: _iikemﬁ (b)
2 2
As the light enters the model, it is resolved into components with vibrations
parallel to the principal-stress directions. The components develop an additional
phase shift A which depends on the principal-stress difference and emerge from the

model as

= . j )
By = Y petorramnits gy = 2 pereamrias (©

= v

2

As the light enters the second quarter-wave plate, it is again resolved into com-
ponents with vibrations parallel to the fast and slow axes of the plate. The com-
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ponents experience a phase shift of A = /2 as they propagate through the plate
and emerge as

5 ‘\/E : " T T (wt+a—mn/4)
Ef—Tk[sm (Z a) = eTicos (4_06”6

7 e 4
E= \/Tk [e_m sin (Z ¥ oc) ~ i cos (Z = a) Je“w’*“‘"/‘“ (1321)

Finally, as the light passes through the analyzer, the vertical components of E’,
and E are absorbed while the horizontal components are transmitted. Thus

5 A A s e o s ; 2
= A e A _ 1 I i(wt+a—n/4)
B 5 {(e 1) sin (4 oz) + i(e ) cos (4 oc)]e
k —iA i(wt+ 2a)
=S (7™ p)elrs 2 (13.22)

Recall from Eq. (11.17) that the square of the amplitude of a wave in exponential
notation is the product of the amplitude and its complex conjugate. Thus

A
I oc E, EX = K sin? : ({322

This expression for the intensity of the light emerging from the analyzer of a
circular polariscope (arrangement A) is identical with that previously determined
using a trigonometric representation of the light wave and presented in
Eq. (13.18).

To establish the effect of a stressed model in a circular polariscope with the
analyzer oriented at an arbitrary angle y with respect to its dark-field position, it is
only necessary to consider the light components emerging from the second
quarter-wave plate, as represented by Eqs. (13.21), and their transmission through
the analyzer when it is positioned as shown in Fig. 13.14. Thus

s 718
- ’ ’ :
E,, = E; cos (Z—I-y) — E/; sin (4+y) ()
A Axis of polarizer
Fast axis Slow axis
Second Second
quarter-wave quarter-wave
plate plate
T T
3|3
f/ -~
Pl
a4 S WAL
a 72 EUX
z
=
Analyzer 4

Figure 13.14 Rotation of the analyzer to obtain
extinction in the Tardy method of compensation.

(€, T
2 5 BAE - £ & o

aah 3 B
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Substituting Egs. (13.21) into Eq. (d) and combining terms yields

_\/§ T —iA T s
E‘w—zk{sm(4 oc)[e cos(4+y) sm(4+y”

+ i cos (Z - cx) [e‘m sin (Z + y) — cos (Z + y)”e““””_”/‘”

(13.24)
The intensity of the light emerging from the analyzer is given by Eq. (11.17) as
iec B B2, (e)

Substituting Eq. (13.24) and its complex conjugate into Eq. (e) and combining
terms through the use of suitable trigonometric identities yields

I = K(1 —cos 2y cos A — cos 2« sin 2y sin A) (13.25)

For a given angle of analyzer rotation y, values of o and A required for maximum
intensity or minimum intensity are obtained from

aI
aa=K(2 sin 2¢ sin 2y sin A) = 0 (f)
oI : .
i K(cos 2y sin A — cos 2« sin 2y cos A) =0 (9)
Values of o and A satisfying Egs. (f) and (g) simultaneously are
2 1
(,,,n+ i nm = 0l 28 o
4
o = and A= maximum intensity
%E 2y + 2nm Ol O o o

minimum intensity

The above conditions for extinction (I = 0) indicate that a principal-stress direc-
tion must be parallel to the axis of the polarizer (« = 0, n/2, ...). The fringe order
at the point is then

A 7
= + = (13.26)
Rotation of the analyzer through an angle y (Tardy method of compensation)
is widely used to determine fractional fringe orders at all points of a photoelastic
model. A plane polariscope is first employed so that isoclinics can be used to
establish the directions of the principal stresses at the point of interest, as shown in
Fig. 13.15. The axis of the polarizer is then aligned with a principal-stress direc-
tion (@ =0 or =/2), and the other elements of the polariscope are oriented to
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0° Isoclinic

15° Isoclinic

Figure 13.15 Locations of the points
of interest relative to the dark-field
isochromatic fringe pattern.

produce a standard dark-field circular polariscope. The analyzer is then rotated
until extinction occurs at the point of interest, as indicated by Eq. (13.26). To
illustrate the procedure, consider the hypothetical dark-field fringe pattern and
points of interest shown in Fig. 13.15. At point P,, which lies between fringes of
orders 2 and 3, the value assigned to n is 2. As the analyzer is rotated through an
angle y, the second-order fringe will move toward point P; until extinction is
obtained. The fringe order at P, is then given by N = 2 + y/m. For point P, the
value of n is also taken as 2, and the analyzer is rotated through an angle y, until
the second-order fringe produces extinction, giving a value for the fringe order of
N =2 + v, /r. In this instance n could also be taken as 3, and the analyzer rotated
in the opposite direction through an angle —7, until the third-order fringe
produced extinction at point P, . In this instance the fringe order would be given
by N =3 —y,/n, which should check the value of N =2 + y1/m obtained
previously.

The Tardy method of compensation can be quickly and effectively employed
to determine fractional fringe orders at arbitrary points in a model, provided
isoclinic parameters are used to obtain the directions of the principal stresses. The
accuracy of the method depends upon the quality of the quarter-wave plates
employed in the polariscope; however, fringe orders obtained with this method
and accurate to two decimal points are often quoted in the literature.

13.9 PHOTOELASTIC PHOTOGRAPHY [25, 26]

In most photoelastic analyses, photographs are taken of the isochromatic and
isoclinic fringe patterns to establish a permanent record of the test. For this reason
it is important that the basic principles of photography be established and that the
differences between landscape and photoelastic photography be understood.
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A sheet of photographic film is prepared with a coating containing certain
silver halides. When this coating is exposed to light, the silver halides undergo a
latent change that is permanently distinguishable on the film after a photographic
development process. The change is a darkening produced by the formation of
metallic silver. The amount of darkening is called the density. The density of a
portion of a piece of exposed and developed film is simply a measure of the ability
of the deposited silver to prevent the transmission of light. The density of a given
type of film is a function of the exposure (light intensity times time) presented to
the film. The characteristics of a density-exposure function were first established
by Hurter and Driffield in the manner shown in F ig. 13.16.

The curve presented in Fig. 13.16 defines four important characteristics of a
photographic film: namely, the fog density D,, the exposure inertia E, the slope
of the curve which establishes the gamma number of the film, and the maximum
density D; which occurs with an exposure E. Each of these characteristics is
important and should be considered in selecting a film for a particular pho-
toelastic analysis. In a photoelastic photograph, zero exposures occur whenever
the intensity goes to zero, Le,when N=0, 1,2, ..., in a dark-field polariscope;
however, the film coating records values of the ranges of exposure above the
inertia value E, . It is this “dead ” exposure which produces the fringe width on a
negative when in theory the fringe is a line. The slope of the density-versus-log-
exposure curve given by y determines the latitude of the film. The usual landscape
film incorporates an emulsion with » & 1. This relatively low value of y gives a
wide range of exposure values over which the film emulsion will be effective in
producing a satisfactory negative. This feature is of course important in landscape
photography, where the proper exposure time cannot be precisely established. For
photoelastic photographs, film emulsions with a high y (3 to 6) are often employed
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Figure 13.16 Hurter-Driffield graph relating exposure and density.
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since this type of film gives a high-contrast negative; i.e., blacks are very black,
whites are very white, with very little gray. This is a desirable situation since the
fringes tend to sharpen and become better defined. The exposure time is of course
more critical, but this time can be accurately established in preliminary exposures
for any given polariscope. The fog density Dy, is less important since it implies that
there is a thin coating uniformly distributed over the film which absorbs light.
This of course detracts from the sharpness of a negative, but since it is a relative
factor it+is not objectionable.

For the linear portion of the density-versus-log-exposure curve, the density D
can be expressed as

‘D0+y(10gE—10g Ep) for E <E<E,
D=1{D, for E<E,
D, for E = E, (13.27)

where D = log I,/I,
I; = intensity of light incident upon developed negative
I, = intensity of light emerging from developed negative
D, = fog density = log I,/I,,
D, = maximum density = log I,/I,.
I, = intensity of light emerging from the unexposed part of developed

negative

I, = intensity of light emerging from an overexposed part of developed
negative

E=1t

I = intensity of light incident on film
t = time of exposure
By employing the above definitions, Eq. (13.27) can be rewritten as

i Il E
logi=log1—;+y logE—0 (a)
which can be reduced to
. 1 E) 7
I Eo

where p is called the brightness ratio = I,/I,.. From this definition it follows that
2 = 1 corresponds to the brightest area on the negative, while p = 0 corresponds
to an opaque area. Note that p = 1 when E < E, since I, = I, and that p —» 0
when E > E, since I, =1

Now recall Eq. (13.18), where the light intensity produced by inserting a
stressed model in a circular polariscope is given by

= sinzg (13.18)
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The exposure for the dark-field negative will be

A A
E = It = Ki sin® = B sin? — (13.29)

where E, = Kt is the uniform exposure produced by the polariscope. Combining
Egs. (13.28) and (13.29) gives

1 A
— for E, > E, sin? = >E
TE e ) e e
A
o= for E, sin ESEO
oA
-0 for E, sin 3 = Ey (13.30)

15 sec 30sec 60 sec 120 sec 240 sec

15 sec 30 sec 60 sec 120 sec 240 sec
v =45

Figure 13.18 Influence of exposure time and gamma number on the appearance of the isochromatic
fringe pattern for a beam in pure bending.
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The results of Egs. (13.30) describe the brightness ratio p for a dark-field
photoelastic photograph. An example of the variation of p with A/2 is given in
Fig. 13.17 for three different exposures (E,/E, = 20, 50, and 100). It should be
noted that increasing the exposure ratio E,/E, reduces the fringe width and
improves the contrast. This sharpening of the fringes by increasing the exposure
time is illustrated in Fig. 13.18 for both high-contrast and landscape film.

1310 FRINGE MULTIPLICATION BY PHOTOGRAPHIC
METHODS [27, 28]

By employing normal photoelastic procedures, two photographs (one light-field,
the other dark-field) are obtained which permit the determination of the order of
the fringes in the following sequence: N = U e 23, .... In certain pho-

toelastic applications it is desirable to improve the accuracy of the determination

mixed-field pattern has fringes at the N/4 and 3N/4 positions. Use of the mixed-
field fringe pattern coupled with ordinary light- and dark-field fringe patterns
permits the orders of the fringes to be determined in the s L sequence,
and thus represents a factor of 2 increase in the number of countable fringes.
The proof of this photographic method can easily be established by drawing
from the results established in Secs. 13608 7 and 139 Fron Egs. 13.30), which
describe the brightness of a negative obtained with a dark-field polariscope,

1
(Epa/Eo)' sin® (Af2)

oA
ogsE, > F , sin? el e
oA
pa<=1 tor E_, sin® 5= E, (b)

A
-0 : for E,, sin? 5= E; (c)

Similarly by combining Egs. (13.28) and (13.29) with Egq. (13.20), the brightness
ratio for a negative in a light-field polariscope is

1 b
4] Eo) cos®” (A/2) =
(E/Eo) cos™ (af2) . (O 1 = B cos 72k (d)
A
pri=1 for E, cos? 7273 E, @
A
- g1 By cos’ 5 = 1, (f)
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The effect of superimposing light and dark field negatives is obtained by multi-
plying the expressions for the brightness ratios. Thus, the brightness ratio p,, for
the mixed field associated with superimposed light- and dark-field negatives is

Pm = Pap ()
Equation (g) leads to four nonzero expressions for p,,
1 from Egs. (b) and (e)
E B ios” @72) from Egs. (b) and (d)
LRl *1——— : from Egs. (a) and (e)
(E,a/Eo) sin®? (A/2)

1
(Epd/EO)y(Epl/EO)y sin®’ (A)2) cos?’ (A2)

Of these four solutions for p,,, the solution p,, = 1 locates the fringe position on
the superimposed negative. Note that p,, = 1 only in regions where both

from Egs. (a) and (d)

E NS E
gos? == UNIEE and gint = 0 (k)
2 VE;, 2 Ey
With equal light- and dark-field exposures
E,= E, = ME, @iy

where M is the exposure multiple. Combining Egs. (k) and (i) yields the condition
M <2 to obtain any region on the superimposed negative where p, = 1. With
M = 2, Egs. (h) become

A il
Zimer e = 13.31
cos 7 =3 sin® > <2 ( )
It is evident then that
é=w— wheren=0, 1,23, .
2 4
A 2n+1
S B 13.32
and = 7 (13.32)

With E,; = E, and M = 2, the superimposed negatives yield a fringe pattern
where the z-order fringes are displayed with N = 1 3,2 ... A schematic illustra-
tion of the brightness ratio p,, as a function of retardation A/2 is shown in
Big13519.

t A more general (reatment of exposure ratio leads to a whole-field compensation
technique [32-34].
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The photographic method of fringe multiplication (doubling) is illustrated in
the two examples cases presented below.

Beam subjected to a constant moment The model of the beam was machined from
+-in-thick CR-39, and a constant moment was applied to the central portion of the
beam by employing the four-point loading technique. Lines were scribed on the
model in order to permit easier alignment of the two negatives during superposi-
tion. The load was increased so that in the region of constant moment there were
about four fringes. So that the photographic method of superposition of negatives
could be carried out, the exposure was kept low. With Kodak contrast-process
panchromatic films, an aperture setting f 45, and an exposure time of 15 s, light-
and dark-field photographs were taken. The contrast-process film used for this
and all the subsequent experiments was developed for 6 min in Kodak D-11
developer. On superposition of light- and dark-field negatives, it was found that
the fringes were distinct and of uniform intensity. If the exposure time was greater
than the optimum value (M = 2), the uniform exposure of the two negatives
became prohibitively high and light would not pass through the two negatives.
Employing exposures under the optimum value produced films so thin that
the fringes were not well defined upon superposition of the negatives. The fringe
patterns obtained for the light field, dark field, and superimposed or mixed fields
are shown in Fig. 13.20. '

Figure 1320 (a) Dark-, (b) light-, and
(c) mixed-field isochromatic fringe patterns
of a beam subjected to a constant binding
moment.
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(a) (5) (¢)

Figure 13.21 (a) Datk-, (b) light-, and (c) mixed-field isochromatic fringe patterns from a three-
dimensional slice.

Slice from a three-dimensional model The model was a segment of a hoop slice
taken from a thick-walled pressure vessel subjected to internal pressure. One end
of the segment was machined into the shape of a wedge in order to locate the
zero-order fringe. The slice was polished and mounted in the field of the polari-
scope, and light- and dark-field photographs were taken. The dark-, light-, and
mixed-field photographs shown in Fig. 13.21 illustrate the improvement possible
in the fringe-order determination by employing this fringe-doubling technique.

13.11 FRINGE SHARPENING WITH PARTIAL MIRRORS [29]

The bandwidth of the isochromatic fringe can be reduced by a novel technique
due to Post [29], which employs partial mirrorst in a circular-lens polariscope.
The partial mirrors are inserted into the field of the polariscope on both sides of
the model and parallel to it, as illustrated in Fig 13.22:

The effect of the partial mirrors is to cause the light to propagate back and
forth through the model in the manner illustrated in Fig. 13.23. As the light is
reflected back and forth between the two mirrors, a portion of it is transmitted at
each reflection point. Hence, the intensity of the ray passing back and forth
through the model is progressively decreasing. For instance, ray 1 is the most
intense, ray 3 less intense, etc. The rays shown in Fig. 13.23 are drawn obliquely

t A partial mirror, sometimes called a beam splitter, is simply an optical element that transmits a
portion of the incident light and reflects the remainder so that T + R = 1, where T is the coefficient of
transmission and R is the coefficient of reflection.
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Figure 13.22 Post’s modification of the lens polariscope, with partial mirrors for fringe sharpening.

only to present the effects of the partial mirrors; in practice, normal incidence is
employed and all the rays coincide and enter and emerge from the same point in
the model.

The effect of the partial mirrors on the intensity of the light as it passes
through a stressed model can be obtained by modifying Eq. (13.18), which is valid
if no partial mirrors are employed in the polariscope:

A
I=K sinzj (13.18)

Consider ray 1 (see Fig. 13.23) and reduce the intensity due to the light lost by
reflection from the partial mirrors at points A4 and B. Thus

A A
I, =K(1—-R)? sinzz =K smzz (a)

where R and T are the reflection and transmission coefficients of the partial
mirror.
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The intensity of the light associated with ray 3 can be written as

I, = KT?R? sin? ig

. (5

In this instance ray 3 has undergone two reflections and two transmissions; hence
the T and R terms in Eq. (b) are squared. Also, the light has passed through the
model three times, and the argument of the sine function has been multiplied by 3
to account for this fact. By following this same procedure, the intensity of the kth
ray may be written as
2pk—1 g2 KA
I,= KT*R*" " sin 5 = U T (13.33)
These intensities I,, Iy, Is, ..., I, add arithmetically; hence the resultant
intensity of the superimposed rays is given by the series expansion

[~ KE'Y R ! sin’ e

(13.34)
k=1 2

If this relationship is expanded and plotted as a function of A/2m = N, the
intensity-versus-fringe-order plot shown in Fig. 13.24 is obtained. When this plot
is compared with the conventional intensity-versus-A/2 plot, also shown in
Fig. 13.24, it is clear why the fringes are sharpened. The eye will begin to record a
fringe at some minimum intensity I,; hence the sharpened intensity function
produces a much narrower fringe than the conventional intensity function. An
example of the isochromatic fringe pattern produced with a pair of partial mirrors,
each with a reflection coefficient R = 0.9 and a transmission coefficient T = 0.1, is
shown 1n Fig. 13.25.

An examination of this figure shows that the sharp light and dark fringes
observed are separated by wide gray bands. The dark fringes correspond to the
sharp valleys on the intensity-versus-fringe-order plot shown in Fig. 13.24, and the
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Figure 13.24 Intensity as a function of fringe order in a standard circular polariscope with
partial mirrors where R = 0.85. (Courtesy of D. Post.)
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Figure 13.25 Isochromatic fringe pattern produced by a dark-field circular polariscope equipped
with partial mirrors. (Courtesy of D. Post.)

light fringes correspond to the sharp peaks on this same graph. The wide gray
bands are produced by the midrange of intensity also shown in this figure.
The dark fringes are ordered ina 0, 1, 2, 3, ... sequence, and the light fringes are
ordered in the 3, 14, 24, 34, ... sequence. Thus, the data normally obtained from
two conventional light- and dark-field photographs are contained in one photo-
graph if partial mirrors are employed in the standard circular lens polariscope.

13.12 FRINGE MULTIPLICATION WITH PARTIAL MIRRORS
[29-31]

Post has also shown that partial mirrors can be quite usefully employed to multi-
ply the number of fringes which can be observed in a photoelastic model. As
pointed out in Sec. 13.8, fringe multiplication is quite important since the stan-
dard methods of compensation used to evaluate the fractional fringe orders are
time-consuming and in certain cases somewhat inaccurate. Fringe multiplication
Is, In a sense, a whole-field compensation technique where the fractional orders of
the fringes can be determined simultaneously at all points on the model.

When partial mirrors are used in fringe multiplication, they are again inserted
into a lens polariscope on both sides of the model; however; in this application
one of the mirrors is inclined slightly, as illustrated in Fig. 13.26. The effect of the
inclined partial mirror on the light passing back and forth through the model is
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Figure 13.26 Partial mirrors as employed in a circular-lens polariscope for fringe multiplication.

shown in Fig. 13.27. From this figure it is clear that each ray of light emerges from
the mirror system at an angle which depends on the number of times the light ray
has traversed the model. For instance, rays 1, 3, 5, and 7, which have traversed the
model the same number of times as their ray number, emerge at angles 0, 2¢, 4¢,
and 6¢. Although the rays do not pass through the same point, the inclination
angle ¢ used in the illustration was greatly exaggerated. The length of the line over
which the photoelastic effect is averaged depends upon the angle of inclination ¢,
the ray number, and the separation distance between the mirrors. In practice,
multiplication by factors of 5 to 7 can be achieved without introducing objection-
able errors due to the averaging process which is inherent in this method. Typical
patterns obtained from a two-dimensional model and from a three-dimensional
slice are illustrated in Figs. 13.28 and 13.29.

The fact that different rays of light are inclined at different angles with respect
to the axis of the polariscope permits cach ray to be isolated. The rays are all
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Figure 1328 Isochromatic fringe patterns of a tensile specimen obtained by using a lens polariscope
equipped with partial mirrors. (Polarizing Instrument Company.)

(c) (@) (e)
Figure 13.29 Isochromatic fringe patterns of a three-dimensional slice obtained by using a lens
polariscope equipped with partial mirrors: (a) normal fringe pattern; (b) sharpened fringe pattern;
(c) after fringe multiplication 3X; (d) after fringe multiplication 5X; (e) after fringe multiplication 7X.
(Courtesy of C. E. Taylor.)
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collected by the field lens but focused at different points in the focal plane of the
field lens (see Fig. 13.26). Any one of these rays can be observed by placing the eye
or a camera lens at the proper image point. A diaphragm stop is useful in eliminat-
ing all images except the particular one under observation.

In practice, the isochromatic fringe patterns associated with rays 1, 3, 5, 7, etc.,
can be observed and photographed for both light- and dark-field settings.
Suppose, for instance, that the light- and dark-field photographs are obtained for
rays 1, 3, and 5. The fringe patterns as recorded on the two photographs asso-
ciated with ray 1 may be interpreted in the conventional sense where the orders of
the fringes are sequenced as 0,4, 1,4, 2, 3, .... However, for ray 3, where the light
has passed through the model three times, the orders of the fringes are sequenced
as 0,5, 3, 3 % & 1, .... Finally, for ray 5, whete the light has traversed the model
five times, the orders of the fringes are sequenced as 0, 1, 4, 25, 2,4, .... Thus the
superposition of the results obtained from these three rays is sufficient to deter-
mine the fringe order to the nearest one-tenth of an order over the entire model.
The fringe-multiplication technique, therefore, can be interpreted as a whole-field
compensation method where fractional orders of the fringes can be determined
with a high degree of accuracy.

The intensity relationship for the mth ray, where m = 1,2,3,4,5, as shown in
Fig. 13.27, can be established by modifying Eq. (13.18) to account for the loss in
intensity and the added thickness effects as the light traverses the model m times. It
is apparent that the intensity of each ray can be written as
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Is= KT?R* smzs7 I, = KT?R""1 smz% (13.35)

Thus, fringe multiplication, by Post’s partial-mirror method, is accompanied by a
considerable loss of light intensity. The intensity of the multiplied fringe pattern as
compared with the ordinary fringe pattern is decreased by the term T2R™" 1,
which is always much less than 1. The loss in intensity for a particular ray can be
minimized by properly selecting the mirror coefficients R and T. Assuming that
the mirrors are perfect,

Substituting Eq. (13.36) into Egs. (13.35) yields

: A
I,= K(R — 1)2R"~! st""7 m=1,2,34,... (a)
Differentiating this expression with respect to R yields

R =K I R DR~ - DR 2R g
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Table 13.1 Optimum mirror properties for
fringe multiplication

Intensity
Multiplication coefficient
factor m R T PIRE
0 1 1

0.500 0.500 0.0625
0.667 0.333 0.0219
0.750 0.250 0.0111
0.800 0.200 0.0067

O~ W W =

Setting Eq. (b) equal to zero and solving for R gives the reflection coefficient for
the mirrors, which minimize the intensity lost as follows:

m—1

= 13:37

m+ 1 ( )
Since R is a function of m (the number of light traverses through the model), it is
not possible to optimize the mirrors for all rays simultaneously. The optimum
coefficients of reflection and transmission for each value of m are presented in
Table 13.1. A multiplication factor of 5 is usually sufficient for most applications;
hence, if only one set of mirrors is available, this set should be selected with
R =0.667 and T = 0.333 to optimize the minimum intensity condition.

EXERCISES

13.1 If a particular point in a photoelastic model is examined in a polariscope with a mercury light
source (4 = 548.1 nm) and a fringe order of 3.00 is established, what fringe order would be observed if a
sodium light source (4 = 589.3 nm) were used in place of the mercury source?

13.2 The stress fringe value f, for a material was determined to be 17.5 kN/m when sodium
light (2 = 589.3 nm) was used in its determination. What would the stress fringe value for the same
material be if mercury light (2 = 548.1 nm) were used in place of the sodium light?

13.3 Derive the equations for light passing through a stressed model in a plane polariscope with the
polarizer and analyzer in parallel positions. Under what conditions does extinction (I = 0) occur?
13.4 Derive the equations for light passing through a stressed model in a plane polariscope (polarizer
and analyzer crossed). Use an exponential representation for the light wave.

13.5 Derive the equations for light passing through a stressed model in a circular polariscope (arrange-
ment C). Use a trigonometric representation for the light wave.

13.6 Derive the equations for light passing through a stressed model in a circular polariscope (arrange-
ment D). Use an exponential representation for the light wave.

13.7 Determine the optical effects produced by light passing through a stressed model in a circular
polariscope (arrangements A and B) with imperfect quarter-wave plates. Assume A = /2 + ¢ for the
imperfect plates.

13.8 Determine the optical effects produced by light passing through a stressed model in a circular

polariscope with imperfect quarter-wave plates. Use arrangements C and D for the polariscope and
assume A = /2 + € for the imperfect quarter-wave plates.



