CHAPTER

FOURTEEN
TWO-DIMENSIONAL PHOTOELASTICITY

14.1 INTRODUCTION [1-5]

In a conventional two-dimensional photoelastic analysis a suitable model is fab-
ricated, loaded, and placed in a polariscope, and the fringe pattern is examined
and photographed. The next step in the photoelastic investigation is the inter-
pretation of the fringe patterns, which in reality represent the raw test data. The
- purpose of this chapter is to discuss the interpretation of the isochromatic and
isoclinic fringe patterns, compensation techniques, separation techniques, and
scaling of the stresses between the model and prototype.

14.2 ISOCHROMATIC FRINGE PATTERNS [1-6]

The isochromatic fringe pattern obtained from a two-dimensional model gives
lines along which the principal-stress difference o; — o, is equal to a constant. A
typical example of a light-field isochromatic fringe pattern, which will be utilized
to describe the analysis, is presented in Fig. 14.1. This photoelastic model repre-
sents a chain link subjected to tensile loads applied axially through roller pins.
First, it is necessary to determine the fringe order at each point of interest on the
model. In this example the assignment of the fringe order is relatively simple since
seven rather obvious 3-order fringes can quickly be identified. The two ovallike
fringes located on the flanks of the teeth (labeled A) are of the § order since the
flank, because of its geometry, cannot support high stresses. The four fringes
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448 OPTICAL METHODS OF STRESS ANALYSIS

Figure 14,1 Light-field isochromatic fringe pattern
of a chain Jink subjected to axial tensile loads
through the roller pins.

flank fillets is 75. When the fringe order at any point on the mode] has been
established, it is possible to compute 01 — 0, from Eq. (13.8),

S A
Sk

a0,

where ¢, and 92 are the principal stresses in the plane of the model. The maximum
shear stress jg given by

N,

1
Tmax = 5 (0-1 == 02) = 2%
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provided ¢, and o, are of opposite sign and o5 = 0; otherwise

o, — 03) = 1o, if 6, and o, are positive
T.

max

o3 —0,) =10, if ¢, and ¢, are negative )

The difference between Eq. (14.1) and Egs. (14.2) is presented graphically in
Fig. 14.2, where Mohr stress circles for two cases are given. When o, > 0 and
0, < 03 = 0, the maximum shear stress is one-half the value of 6, — ¢, and can be
determined directly from the isochromatic fringe pattern according to Eq. (14.1).
However, when ¢, > ¢, > g5 = 0, the maximum shear stress does not lie in the
plane of the model, and Eq. (14.1) gives 7, (see Fig. 14.2b) and not r,,,.. To
establish 7,,,, in this case it is necessary to determine o, individually and not the
difference o; — o, . This is an important point since the maximum-shear theory of
failure is often used in the design of machine components.

On the free boundary of the model, either ¢, or g, is equal to zero; hence, the
stress tangential to the boundary can be determined directly from

Nfa
h

The sign can usually be determined by inspection, particularly in the critical
areas where the boundary stresses are a maximum. By referring to Fig. 14.1, it is
apparent that the stresses in the flank fillets are tensile while the stresses along the
back of the plate are compressive. On the free surface of the pinholes, the stresses

0-1, 0-2 —

(14.3)
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Figure 14.2 Mohr’s circle for the

o3 o, oy state of stress at a point (a) o, > 0,
() 0,<035=0;()g,>0,>0;=0.
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Figure 14.3 Photoelastic fringe patterns showing the distribution of stress through a section of
square tubing with a circular bore.
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on the horizontal diameter are tensile and the stresses on the vertical diameter are
compressive (see Sec. 3.14). The stresses on that portion of the boundary of the
hole where the pin is in contact cannot be determined by applying Eq. ( 14.3) since
the boundary is not free and, in general, ¢, or a, will not approach zero. In this
case neither ¢, nor ¢, is known, a priori, and it is necessary to separate the
stresses, 1., individually determine the values of 0y and o,, at this region of
contact on the pinhole. Methods to employ in separating the stresses are pre-
sented in Sec. 14.6.

As another example of the interpretation of isochromatic fringe patterns,
consider the photograph presented in Fig. 14.3. In this instance a photoelastic
model of square conduit with a circular borehole was analyzed. A uniformly
distributed load was applied to the circular hole of the model. The stresses along
the outside edges of the model can be determined directly from Eq, (14.3) since
these edges represent free boundaries of the model. Along the boundary of the
circular hole the surface is not free; however, in this case the stress o, acting

normal to the boundary is known to be equal to p, the applied load. Hence
Eq. (13.8) becomes

N Nf,
01— 0,=0,+p= Ef” or alz-hf——p (14.4)
where 6, = —p, since the applied pressure p is considered as a positive quantity.

In conclusion, it is clear that the isochromatic fringe pattern, once identified,
can be interpreted in the following manner:

l. 01 — 0, can be determined at any point in the model from Eq. (13.8)

2.1f ¢, >0 and o, <0, 01 — 0, can be related to the maximum-shear stress
through Eq. (14.1).

3 Ife;,>0,>0o0rifQ0> 01> 03,01 — 0, cannot be related to the maximum-
shear stress and it is necessary to determine ¢, and 05 individually and relate
Tmax 10 01 OF 0, by Eq. (14.2).

4. If the boundary can be considered free (that is, o, or ¢, = 0), the other princi-
pal stress can be determined directly from Eq. ( 14.3).

5. If the boundary is not free but the applied normal load is known, the tangential
boundary stress can be interpreted by applying Egs. (14.4).

6. If the boundary is not free and the applied load is not known, separation

techniques discussed in Sec. 14.6 must be applied to determine the boundary
stresses.

14.3 ISOCLINIC FRINGE PATTERNS [1-6]

The isoclinic fringe pattern obtained in the plane polariscope is employed pri-
marily to give the direction of the principal stresses at any point in the model. In
practice this may be accomplished in one of two ways. The first procedure is to
obtain a number of isoclinic patterns at different polariscope settings and to
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45° 60° 75°

Figure 14.4 Isoclinic fringe patterns for a circular ring subjected to a diametral compressive load.

combine these fringe patterns to give one composite picture showing the isoclinic
parameters over the entire field of the model. The second procedure is to isolate
the points of interest and then to determine individually the polariscope setting,
Le., the isoclinic parameter, associated with each of these points.

An example of a series of isoclinic fringe patterns is shown in Fig. 14.4, where
a thick-walled ring has been loaded in diametral compression. The data presented
in this series of photographs are combined to give the composite isoclinic pattern
illustrated in Fig. 14.5. Several rules can be followed in sketching the composite
isoclinic patterns from the individual isoclinic fringe patterns. These rules are
described below:

L. Isoclinics of all parameters must pass through isotropic or singular points.

2. An isoclinic of one parameter must coincide with an axis of symmetry in the
model if an axis of symmetry exists.

3. The parameter of an isoclinic intersecting a free boundary is determined by the
slope of the boundary at the point of intersection.

4. Isoclinics of all parameters pass through points of concentrated load.

An inspection of Figs. 14.4 and 14.5 will show that isoclinics of all parameters
pass through the isotropic points as labeled by 4 through J. At isotropic points,
0, = 0, and all directions are principal; hence, isoclinics of all parameters must
pass through these points. Again from an inspection of Fig. 14.5 it is clear that the
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parameter of the isoclinic can be established by the slope of the boundary at its
point of intersection. The reasoning for this behavior of isoclinics at free boun-
daries is based on the fact that the boundaries are isostatics or stress trajectories.
That is, the tangential stress at the boundary is principal, and as such the isoclinic
parameter must identify the slope of the boundary at the point of intersection. The
axes of symmetry cannot support shear stresses; hence, these axes are principal
directions and the isoclinics must identify them. The horizontal and vertical axes
of the ring shown in Fig. 144 are axes of symmetry and are included in the 0°
isoclinic family. Finally, at the points where a concentrated load is applied, the
stress system in the local neighborhood of the load is principal in the » and @
directions, where the point of load application is the center of this local circle. It is
clear then that the principal-stress directions will vary from 0 to 180° in this local
region, and isoclinics of all parameters will converge at the point of load applica-
tion, as illustrated in Fig. 14.5.
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Figure 14.5 Composite isoclinic pattern for a circular ring subjected to a diametral compressive load.
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Figure 14.6 Construction tech-
nique for converting isoclinics to
AR isostatics.

The isoclinics, lines along which the principal stresses have a constant inclina-
tion, give the principal-stress directions in a form which is not appreciated by
other factions in the engineering field. As a consequence, it is normal procedure to
present the principal-stress directions in the form of an Isostatic or stress trajec-
tory diagram where the principal stresses are tangent or normal to the isostatic
lines at each point. The isostatic diagram can be constructed directly from the
composite isoclinic pattern by utilizing the procedure outlined below and shown
graphically in Fig, 14.6. In this construction technique, the stress trajectories are
initiated on the 0° isoclinic from arbitrarily spaced points. Lines labeled 1 in
Fig. 14.6 and oriented 0° from the normal are drawn through each of these arbi-
trary points until they intersect the 10° isoclinic line. The lines (1) are bisected, and
a new set of lines (2) is drawn, inclined at 10° to the vertical to the next isoclinic
parameter. Again these lines are bisected, and another set of construction lines (3)
is drawn oriented at an angle of 20° to the vertical. This procedure is repeated
until the entire field is covered. The stress trajectories are then sketched by using
lings 1,2, 3, ete, as guides. The stress trajectories are drawn tangent to the
construction lines at each isoclinic intersection, as illustrated in Fig. 14.6.

The isoclinic parameters are also employed to determine the shear stresses on
an arbitrary plane defined by an Oxy coordinate system. By recalling the fact that
the isoclinic parameter gives the direction between the x axis of the coordinate
system and the direction of ¢, or 5, , and referring to the Mohr's circle representa-
tion given in Fig. 1.12 and Egs. (1.16), it is clear that

01 —0,

Ty s s S~ 1\2]2" sin 26, (14.5)
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where 6, is the angle between the x axis and the direction of g, as given by the
isoclinic parameter. Also

o= - %2 §in 29, = %sin 26, (14.6)
where 6, is the angle between the x axis and the direction of ¢, as given by the
isoclinic parameter.

The combined isochromatic and isoclinic data represented in Eqgs. (14.5) and
(14.6) permit the determination of Ty This value of 7, is used in the application
of the shear-difference method (see Sec. 14.6A) for individually determining the
values of g, and ¢, .

144 COMPENSATION TECHNIQUES [7-13]

The isochromatic fringe order can be determined to the nearest /4 order by employ-
ing both the light- and the dark-field fringe patterns. Further improvements on the
accuracy of the fringe-order determination can be made by employing mixed-field
patterns or by using Post’s method of fringe multiplication. However, in certain
instances even greater accuracies are required, and point-per-point compensation
techniques are employed to establish the fringe order N. Two of these methods of
compensation will be discussed here: the Babinet-Soleil method and the Tardy
method.

A. The Babinet-Soleil Method of Compensation [7, 8]

In employing the Babinet-Soleil method of compensation, one inserts into the
field of the polariscope, together with the model, another source of birefringence.
As illustrated in Fig. 14.7a, the light passes through both the model and the
Babinet-Soleil compensator. The optical effect of the superposition of these two
sources of birefringence is presented in F ig. 14.7b. At a general point the state of
stress on a principal element can be expressed by o, and ¢, , and the optical effect,
ie., the fringe order, is proportional to ¢, — ¢, . However, when the compensator
is placed into the field with its axis parallel to the o, direction, the optical response
of the combined system can be varied by controlling the effective birefringence of
the compensator. If, in particular, the birefringence of the compensator is set equal
to that of the model by letting 6* = ¢, — ¢, (see Fig. 14.7b), then the combined
fringe order goes to zero.

The Babinet-Soleil compensator is simply a small variable wave plate which
can be inserted into the field of the polariscope, oriented along either the 0, or the
g, direction, and adjusted to cancel the optical response of the model. The con-
struction details of the Babinet-Soleil compensator are presented in Fig. 14.7q4.
This instrument contains a quartz plate of uniform thickness and two quartz
wedges. The optical axes of the quartz crystals employed in the plate and the
wedges are mutually orthogonal. Since quartz is a permanently doubly refracting
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Figure 14.7 The Babinet-Soleil compensator: (a) light passing through the model and compensator;
(b) superposition of retardation exhibited by model and compensator.

material, the birefringence exhibited by the compensator can be controlled by
adjusting the thickness of the two wedges by turning a calibrated micrometer
screw. The resultant retardation produced by this instrument depends upon the
thickness of the quartz components t; and t,. When t; = t,, the retardation
imposed is zero; however, for t, 2 ty, both positive and negative retardation can
be imposed on the system.

In practice, a point is selected on the model where the fringe order is to be
determined precisely. Next, isoclinic parameters are established for this point to
give the direction of either 01 Or g,. The compensator is then aligned with the
principal-stress direction and adjusted to cancel out the model retardation. The
reading of the screw micrometer is proportional to the fringe order at the point in
question. In this manner the determination of N can be made with at least two-
and possibly three-decimal-point precision.

B. The Tardy Method of Compensation [9-13]

The Tardy method of compensation is very commonly employed to determine the
order of the fringe at any arbitrary point on the model. Actually., .the Tar.dy
method is often preferred over the Babinet-Soleil method since no auxiliary equip-
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145 CALIBRATION METHODS [1]

In most photoelastic analyses the stress distribution in a complex model is sought
as a function of the load. To determine this stress distribution accurately requires
the careful calibration of the material fringe value f, . Although the values of e
found in the technical literature are reasonably accurate, the materiai fringe values

fringe value,

In any calibration technique one must select a body for which the theoretical
stress distribution is accurately known. Preferably the model should also be easy
to machine and simple to load. The calibration model is loaded in increments, and

J+ can be determined.

Consider first a tensile specimen having a width w and a thickness h, which is
often employed as a calibration member. The axial stress induced in the necked
region of the tensile specimen by the load P can be expressed as

P
1= e i1 (14.7)
Substituting Egs. (14.7) into Egq. (13.8) gives
P NY, P
T OF . f = N (14.8)

This equation shows that the value of £, obtained from the tensile specimen is
totally independent of its thickness h. In practice, a curve of the load P is plotted
as a function of N (see Fig, 14.8) for five or six different points. The slope of the
straight line drawn through these points is used for the value of P/N in Egs. (14.8)
to average out small errors in the reading of P and N.

The circular disk loaded in diametral compression is also employed as a
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P

Applied load A

/D

| 1 |
Fringe order N

Figure 14.8 Typical calibration curve obtained by using a tensile specimen.

The stress distribution along the horizontal diameter (that is, y = 0) is given
by

g (Dz —4x2)2

7= =2\ b2 4 a2
2 = 2P 4p* g
i 1= = % (DZ T 4x2)2
Ty =0 (14.9)

where D = diameter of disk
x = distance along the horizontal diameter measured from center of disk
h = thickness of disk

The difference in the principal stresses ¢, — g, is

8P D*—4Dx> Nf,

O, e A e 14.10
T (D> +4x*)? " h ( )
4 o)
i e 8P D* — 4D (14.11)

= 2DN (D + 4x7)

Equation (14.11) can be employed to calibrate photoelastic materials if a single
load P is applied to the disk. In this case the fringe order N is determined as a
function of x along the horizontal diameter. These values of N and x are then
substituted into Eq. (14.11) to give several values of fo» which in turn are averaged
to reduce errors in the reading of the fringe order.

More often, however, the center point of the disk, that is, x = y =0, is used for
the calibration point, and several values of load are applied to the model. In this
instance, Eq. (14.11) reduces to i

Jo= DN (14.12)
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Again it is noted that the value of Jo is independent of the mode] thickness . The
value of P/N substituted into this equation is determined by plotting several
points of P versus N and establishing the slope of this straight line.

14.6 SEPARATION METHODS [1-5, 14-21]

In the analysis of isochromatic patterns, it was shown that the principal-stress
difference ¢, — o, could be determined directly and that the maximum shear
stress could be determined provided the two principal stresses are of opposite sign.
Also, at free boundaries, the principal stress normal to the boundary is zero;
therefore, the isochromatic data yield directly the value of the other principal
stress. At interior regions of the model, individual values for the two principal
- stresses cannot be obtained directly from the isochromatic and isoclinic patterns
without using supplementary data or employing numerical methods. The separa-
tion methods to be discussed here will be limited to those which are commonly
used and will include methods based on: (1) the equilibrium equations, (2) the
compatability equations, (3) Hooke’s law, and (4) photoelasticity measurements
at oblique incidence,

A. Methods Based on the Equilibrium Equations [1-5]

The two methods described in this section are based solely on the equations of
equilibrium and as a result are independent of the elastic constants of the pho-
toelastic model material. The first method, commonly referred to as the shear-
difference method, is based on a graphical integration of the equations of
equilibrium as expressed by Egs. (1.3). The second method, commonly known as
Filon’s method, involves a graphical integration of a form of the equations of
equilibrium known as the Lamé-Maxwel] equations. Since both these methods are
based on graphical integration techniques, they suffer from the limitation that
errors are accumulated as the integration proceeds. Thus, extreme care must be
exercised to ensure a high degree of accuracy in the original experimental data
(isochromatics and isoclinics).

The shear-difference method [L, 2, 5] The equations of equilibrium (1.3) when
applied to the plane-stress problem in the absence of body forces reduce to

do, 0% o MG

- == -2 2 =90 14.13
Ox g Oy dy T Ox ( )
where o, ¢,, and Tyy are the normal and shear components of stress at an
arbitrary point in the plane stress model under study. Solutions of the equilibrium

equations can be obtained in the form

Oy ot
o=l = | Fdx 0= (o) [ 2

= 4 14.14
3y y (14.14)
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which can be closely approximated by the finite-difference expressions

=@ - T35 o,=(g) -1 A;y (14.15)

In the above expressions, the terms (o,), and (o,), represent known stresses at
points which have been selected as starting points for the integration process.
Usually, these points are selected on free boundaries where the nonzero stress can
be computed directly from the isochromatic data. The term 7., ¢an be computed
at any interior point of the model by using Eq. (14.6):

Ty =13(01 — 03) sin 20,

When using this expression, care must be taken to maintain the proper algebraic
sign for 7.,. The expression as presented gives the sign of the shear stress in
accordance with the theory-of-elasticity sign convention outlined in Chap. 1. The
sign should be verified by inspection whenever possible. The term A 18

Ty B
0\0(\Q .
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cD
Ty along

¥

L
AA 4

X

k—s |A

o s P)(
c D
don e Ao A Mg ke K

Figure 14.9 Grid system often em-
ployed in the application of the shear-
difference method.
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9y =0, — (0, — 75,) cos 26, (14.16)

Equations (1.8), (1.9), and (13.8) can then be combined to give the two principal
stresses as follows:

1 1 1 NYs
(28} =§(o’x Al O'y) +§(0'1 —02)25(% +U.v) -+ 9%

1 1 1 Nf,
02=§(O'x+0y)—5(0'1_Uz)zi(o-x""o-y)_ﬁ (14'17)

With the principal stresses and their orientation known at every point along the
line, the state of stress s completely specified. The procedure can be repeated for
any line of interest in the Specimen.

Filon’s method [1-4] Equilibrium of a small curvilinear rectangle bounded by
four isostatics (stress trajectories) leads to a form of the equilibrium equations,
commonly known as the Lamé-Maxwell equations, which can be expressed as

Goy ity i oo, (14.18)
0s, 02 s, P1

where s, and 8, are orthogonal curvilinear coordinates measured along the ¢,
and o, isostatics, respectively, and p, and p2 are the respective radii of curvature
of these isostatics. When the isostatics are accurately known, this form of the
equilibrium equations is easier to use than the cartesian form. Integrating along
one of the isostatics yields

sy oweilga), - ‘“\p“ﬂ ds,  (14.19)
1

known stress, usually on a free boundary, and evaluating the integral from a plot
of (0, — ,)/p, versus s, or (6, — 0,)/p, versus 8. The change in principal stress
between the origin and the point of interest along the isostatic is the accumulated
area under the curve. This method is certainly the most convenient when the
problem of interest involves rotational Symmetry. In this case, since the isostatics
are concentric circles and radia] lines, the isochromatics alone are sufficient for the
Integration. For an integration along a radial line, the radius of Curvature needed
for the integration is simply the distance from the axis of Symmetry to the point
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under consideration. The appropriate plot for evaluating the integral would be
(6, — a,)/r versus r.

In the more general case of integration along an isostatic in an arbitrary stress
field, the radius-of-curvature data are difficult to obtain with sufficient accuracy
from photoelastic observations of the isoclinics. Brittle-coating isostatics can also
provide the radii of curvatures, but this procedure is not recommended since more
accurate methods are discussed in the subsections which follow.

B. Methods Based on the Compatibility Equations [14-17]

The compatibility or continuity equation for plane stress or plane strain in terms
of cartesian stress components and with eonstant or zero body forces can be
expressed in terms of the first invariant of stress as

2 02

32 (0 POk b? (@ t6,) =0 (14.20)

Equations of this form are known as Laplace’s equation, and any function which
satisfies this equation is said to be a harmonic function. In photoelasticity, interest
in Laplace’s equation arises from the fact that the value of the function is uniquely
determined at all interior points of a region if the boundary values are known. It
was shown previously that the photoelastic isochromatics provide an accurate
means for determining both the principal-stress difference o; — o, at all interior
points of a two-dimensional model and, in many instances, complete boundary-
stress information. Knowledge of the principal-stress sum ¢, + o, throughout the
interior, together with the principal-stress difference o, — ¢, provides an effective
means for evaluating the individual principal stresses.

Rigorous mathematical solution of Laplace’s equation is possible only in
cases where the boundary is relatively simple. Approximate solutions, which are
sufficiently accurate for all practical work, can be obtained by numerical and
experimental means. The Laplace equation serves as the governing equation in
many other fields of engineering. Included are electrostatic fields in regions
enclosed by boundaries at known potential, steady-state temperature distribu-
tions, and shapes of uniformly stretched films or membranes. Since the behavior of
these different physical systems can be expressed in the same mathematical form,
the one permitting the easier form of measurement can be used to study behavior
in any of the other systems. These types of measurement methods are referred to
as analogy methods.

In this section, three methods will be discussed for solving the Laplace equa-
tion. They include an analytic method, a numerical method, and an analogy
method. The most important limitation of the methods described in this section is
the requirement for complete knowledge of the boundary-stress distribution.

The analytic separation method [14] Solution of Laplace’s equation by the method
of separation of variables yields a sequence of harmonic functions which can be
added together in a linear combination to give a series representation H of the first
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stress invariant I. Solutions for H referred to several coordinate systems are
presented in Table 14.1.

If the region of the model conforms to a regular coordinate system, determin-
ation of the proper coefficient for each function is considerably simplified. The
sequence of functions when evaluated on the boundaries of the region reduces to a
Fourier series. The unknown coefficients in these cases are the Fourier coefficients
obtained by integrating the prescribed boundary values.

If the region of the model does not conform to a particular coordinate system,
Fourier analysis cannot be employed to determine the coefficients which satisfy
the prescribed boundary conditions. Instead, the method of least squares is used
for the determination of the coefficients. A finite number of harmonic functions is
first selected to appear in the series solution. Coefficients are then chosen such that
the mean-square difference between the prescribed boundary values and the eva-
luation of the series along the boundary is minimized. If N harmonic functions F,,

F,,..., Fyareselected and the associated unknown coefficients are denoted as C,,
C,, ..., Cy, the series solution for the first stress invariant is
N
H="% C.F, (14.21)

n=1

If I(s) is used to represent the distribution of the first stress invariant along a
boundary of total length L, H must be selected such that

L N 2

| [1(5) =y an,,J ds = minimum (14.22)
S0

The N unknown coefficients of this series can be evaluated by taking the partial
derivative of the integral with respect to each of the coefficients and setting the
resulting expressions equal to zero. Thus

n=1

Seln N 2
o [I(S)— ZCnFnJ e N
0Cy Yo n=1

which can be reduced to

N ik L

oG R e -1 N (14.23)
n=1 L0 =0
Equation (14.23) yields N simultaneous equations in terms of the N unknown
coefficients. Solution of this set of equations gives the coefficients which provide
the best match of boundary values possible with the initial selection of N har-
monic functions. By increasing the number of functions in the series for H, the fit
can be made as accurate as the original photoelastic determination of I(s).

The four-point influence method [15] Numerical methods can be used very effec-
tively to solve Laplace’s equation. The method to be described here utilizes an
iteration procedure by which estimated values of the harmonic function at points
of interest of a network are systematically improved by making use of the fact that
the value of the function at any point depends upon the values of the function at
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T2(0,b)
3(—¢, 0) 0(0,0) 1(a, 0)

4(0, —d) Figure 14.10 Network points in the general case.

neighborhood points. The basic relationship between values of the function at
different points can be expressed by the four-point influence equation as

q)o = Clq)l + CZ(I)Z + C3®3 + C4q)4 (1424)

where neighborhood points in the most general case are located as shown in
Fig. 14.10 and the constants Cy, C;, C3, and C, have the following values:

bed acd

(bd + ac)(a + ¢) e (bd + ac)(b + d)
abd c abc

" (bd + ac)(c + a) * (bd fac)d - b)

In regions where a square array or network of points can be used, the computa-

tions are simplified since C, = C;=C;=C, =1

Once the grid network has been established and the constants associated with
each point evaluated, the known boundary values can be assigned to all points of
intersection of the network with the boundary and estimated values or zero can be
assigned to interior points. The value of each interior point is then improved by
traversing the network in a definite sequence and using Eq. (14.24). Each time the
network is traversed, the values are improved. The process is continued until the
values become stationary or until further corrections do not alter the values more
than a predetermined amount. At this stage in the procedure, further accuracy can
be obtained only by using a finer-grid network.

In general, the labor involved in the process can be reduced by initially
selecting a coarse network to establish reasonable values for the interior points. A
fine network can then be introduced in selected regions (areas of high stress
gradient) to improve the accuracy of the determinations in these regions.

The method suffers from the limitation that complete boundary-stress data
must be available. Also, the method cannot be used to evaluate stress distributions
along selected lines of interest without performing the evaluation for the complete
model. Only symmetry considerations can be used to effect a reduction in the
number of network points to be evaluated. The method has the advantage that
isochromatic data alone are sufficient for the determinations. The method also has

I

(14.25)

3
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the advantage that errors made during the iteration process have no influence on
the final results. Errors simply increase the number of iterations required to obtain
stationary values at interior points.

The electrical-analogy method [16, 17] The electrical-analogy method makes use
of the fact that the voltage distribution in a uniformly conducting region enclosed
by boundaries at known potential is governed by the Laplace equation in the
same manner as the principal-stress sum in a plane-stress situation. Since means
are readily available for applying and measuring voltage distributions, electrical
measurements provide an excellent means for determining principal-stress sums in
the interior of any complicated two-dimensional model.

An electrical model of the same geometry as the photoelastic model is
prepared from a uniformly conducting material. Teledeltos paper, which consists
of a uniform layer of graphite particles over a thin paper carrier, is a very suitable
material from which to fabricate the electrical model. The Teledeltos paper,
produced in widths up to 36 in (914 mm) and in lengths of several hundred feet
(approximately 100 meters)is available with two different resistance values: 20 and
80 kQ/in? (30 and 120 MQ/m?). Voltages applied to the boundary of the
electrical model are proportional to the value of I; determined on the boundary
of the photoelastic model. The values of I; on the boundary of the photoelastic
model can be established from the isochromatic fringe pattern by using

Nfs
h

since on a free boundary B either ¢; or g, = 0. The voltages applied to the
boundary of the electrical model are of both a positive and a negative value, so
that care should be exercised in applying the correct sign to the magnitude of the
values obtained from Eq. (14.26). A typical circuit diagram illustrating the method

1120'1-4-62:0'1—0'2:

(14.26)

Axis of
/ symmetry

— +6volts
e

I La—Axis of
= symmetry

il
— —b6volts

e e ———

Figure 14.11 Electrical circuit for applying voltages to a Teledeltos paper model.
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Figure 14.12 Isopachic pattern for a section of square tubing with a pressurized circular bore
obtained using Teledeltos paper.

of applying voltages to the boundary of a Teledeltos paper model is illustrated in
Fig. 14.11.4+ The graphite surface of the model is then probed with a high-
impedance voltmeter to establish lines of constant voltage on the interior regions
of the model. These lines of constant voltage are analogous to the isopachic lines
where 6, + ¢, = constant. An example of the constant-voltage lines obtained for
a section of square tubing with a pressurized circular bore is illustrated in
Fig. 14.12. Isochromatic patterns for the same model were previously shown in
Fig, 14.3.

The electrical-analogy method for separating principal stresses is one of the
simplest, most rapid, and most accurate of the numerous techniques available.
The equipment and skills required in applying the method are quite modest, and
excellent results can quickly be achieved.

C. Methods Based on Hooke’s Law [18, 19]

Separation methods based on Hooke’s law make use of the fact that the strain in a
direction perpendicular to the surface of a plane-stress model can be expressed as
Ah

v
& V.0 _E(axx+ayy)= W

€= (01 +05,)

v

E
E

or o1 +0,=—"Ah (14.27)
vh

From Eq. (14.27) it is obvious that the sum of the principal stresses can be

determined if the change in thickness of the model, as a result of the applied loads,
can be measured accurately at the point of interest. The procedure requires a

It should be noted here that this method can also be employed in heat transfer to solve the
equation V2T = 0, The constant-voltage lines in this case are analogous to isothermal lines,
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device with high sensitivity since the thickness changes are seldom more than a
few thousandths of an inch. Instruments which have been developed to make these
measurements include lateral extensometers and interferometers.

Lateral extensometers [18] Lateral extensometers can be described as extremely
sensitive micrometers or calipers. Quite often, the increased sensitivity is obtained
by using delicate mechanical- or optical-lever systems. Specialized designs also
exist which permit the use of electrical-resistance strain gages or linear differential
transformers as the sensing elements. Extensometers are difficult to position and
use if the geometry of the model is at all complicated. This method is recom-
mended only for special situations where limited point data are desired.

Optical interferometers [19] Optical interference between rays of light reflected

from a model surface and from an auxiliary optical flat placed close to the model
surface provides an accurate means for determining the air gap between the two

6

i

Figure 14.13 Isopachic fringe pattern obtained with a series interferometer. (Courtesy of D. Post.)



difficult to achieve.

Other interferometer Systems which use transmitted rather than reflected light
in their operation have been adapted for use in the determination of principal-
stress sums. One such instrument, the series interferometer, was designed for this

with its coherent and monochromatic light, has made optical interferometry a
valuable experimental stress-analysis method for other applications.

D. Oblique-Incidence Methods [20, 21]

principal stresses,

Consider first the case where the principal stress directions are known and
rotate the model about the 01 axis by an amount 0, as shown in F ig. 14.14. The
light passes through the plane of the model obliquely and traverses a distance of
h/cos 0 through the model. The fringe pattern produced is related to the secon-
dary principal stresses lying in the plane normal to the axis of the light, which in

Figure 14.14 Rotation of the model about the 0, axis.
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this case is the plane containing ¢, and ¢ . Thus

fo'NB
) (14.28)

=
0, — 05 =

where Ny is the fringe order associated with the oblique-incidence fringe pattern.
By applying Eqs. (1.16), it is clear that

65, =05 cos> 0

+N
Hence 0, — 6, cos? f = h/{cos(’G) (14.29)

By combining Eq. (14.29) (oblique incidence) with Eq. (13.8) (normal incidence),
it can be shown that

- o
' hsin? 0

1
(Ng— Ny cos 6) azz%ﬁz—e(Ng cos 0 — N,) (14.30)

where N, is the fringe order associated with the normal-incidence pattern.

By employing Egs. (14.30) together with isochromatic fringe patterns from
one normal- and one oblique-incidence photograph, it is possible to separate the
principal stresses. This approach is often used to separate stresses along a line of
symmetry where one rotation of the model about the line of symmetry provides
sufficient data to separate the stresses along the entire length of the line.

Next consider the case where the principal-stress directions are not known
and rotation of the model is made about arbitrary axes such as Oy and Ox.

In this instance three fringe patterns are obtained: the normal-incidence
pattern, the oblique-incidence pattern corresponding to a rotation about O y, and
an oblique-incidence pattern corresponding to a rotation about Ox. The normal-
incidence pattern gives, by Egs. (13.8) and (12);

gi= 2 o J}i,, o ay) 1 4z, (a)

The oblique-incidence fringe pattern associated with a model rotation about
Oy gives

Noy=—— 717 ()

where ¢} and o7, are secondary principal stresses in the y'x’ plane which is normal
to the incident light along the 2 axis. From Egs. (1.12) it is clear that

Ty —oh= \/(ch' T, O—y’y’)2 T 41—5’)” (c)
and from Egs. (1.6)
T 0, GOSN g e eed ) d)
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Combining Egs. (b) to (d) yields

h RO e et L A R Gy
N = T (0, cos? 0, — a,,)* + 452, cos? 6, (e)
o y

In a similar manner it can be shown that the oblique-incidence pattern associated
with a rotation about Ox yields
h Sl S5
Np=—= ra (0. 5, c0s20 )2 41, cos? 0, (f)
a X

If the rotation is controlled so that 0. =0, = 0.Egs. (a), (e), and (f) reduce to

N
e ) 2 2
N Oir 2O-xx Oy + By & 4IXY

g s A 2 2 2 2
B2 = Osx COS 020 .0, cos’ 0+ g, &4t cos? @)

N2 2 6 2
£$~l5 =0 — 20, a,, cos® 0 + g2, cos* 0 + 417, cos? 0 )
Solving these equations for O.x OF 0, yields

2 t2 0
(a}") = TSOE(;SIO [NG, + N, cos? § — N2(1 + cos? 0)]
5 (14.31)

fo
Solutions of Egs. (14.31) for 0xx and o, are sufficient to permit separation of
the principal stresses. Addition of 0.« and o,, gives the value of the first invariant
of stress I, = ¢, + o,. All other quantities associated with this two-dimensional
state of stress can be obtained from the known quantities ¢, — 0,,01+0,,0
and g,, by employing the relations presented in Secs. 1.5 to 1.7.

a. h\?2 cot? 0
( ) =1 cost g Vi, + N3, cos® 0 — N3(1 + cos? 0)]

XX 5

14.7 SCALING MODEL-TO-PROTOTYPE STRESSES [22-25]

In the analysis of a photoelastic model fabricated from a polymeric material, the
question of the applicability of the results is often raised since the prototype is
usually a metallic material. Obviously, the elastic constants of the photoelastic
model are greatly different from those of the metallic prototype. However, the

QF - 2F
2 i sl )
Vie.+ta )¢ G U(@x o ay) (14.32)
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This stress equation of compatibility is independent of the modulus of elasticity E
and thus shows that the value of the model modulus does not influence the stress
distribution. The influence of the other elastic constant v (Poisson’s ratio) depends
on the nature of the body-force distribution. If 0F /0x 4 0F, /0y = 0, the stress
distribution is independent of Poisson’s ratio. This statement implies that there
will be no influence due to Poisson’s ratio when

- Fx=F, =0 (the absence of body forces)
- Fy=Cy, Fy = C, (the uniform body-force field, ie., gravitational)
- F,=Cyx, F,= —C,y (a linear body-force field in x and y)

W N =
I

pd

There are two exceptions to this general law of similarity of stress distribuy-
tions in two-dimensional parts. First, if the two-dimensional photoelastic model is
multiply connected, Eq. (14.32) does not apply. In this case the multiply con-
nected body has a hole or series of holes, and the influence of Poisson’s ratio will
depend upon the nature of the loading on the boundary of the hole. If the resultant
force acting on the boundary of the hole is zero, the stress distribution will again
be independent of Poisson’s ratio. However, if the resultant force applied to the
boundary of the hole is not zero, the value of Poisson’s ratio will influence the
distribution of the stresses. F ortunately, in specific examples of this type where
the effect of Poisson’s ratio has been evaluated, its influence on the maximum
principal stress is usually less than about 7 percent.

The second exception to the laws of similitude is the case where the pho-
toelastic model undergoes appreciable distortion under the action of the applied
load. Local distortions are a source of error in notches, for example, since curva-
tures are modified and the stress-concentration factors are decreased. These model
distortions can be minimized by selecting a model material with a high figure of
merit and reducing the applied load to the lowest value consistent with adequate
model response.

Since the photoelastic model may differ from the prototype in respect to scale,
thickness, and applied load, as well as the elastic constants, it is necessary to
extend this treatment to include the scaling relationships. A great deal has been
written concerning scaling relationships employing dimensionless ratios and the
Buckingham 7 theory; however, in most photoelastic applications, scaling the
stresses from the model to the prototype is a relatively simple matter where
the pertinent dimensionless ratios can be written directly. For instance, in the case
of a two-dimensional model with applied loads P, the dimensionless ratio for
stresses is ohl/P and for displacements §Eh/P. Thus the prototype stresses can be
written as

B hals
and the prototype displacements as
05 =10 Py B (14.34)
Wa LR T
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where o = stress at given point

0 = displacement at given point

P = applied load

h = thickness

I = typical length dimension
and subscripts p and m refer to the prototype and the model, respectively,

In conclusion, it is clear that scaling between model and prototype can be

accomplished in most two-dimensional problems encountered by the photoelasti-

distribution, e.g., contact stresses. Also, Poisson’s ratio need not be considered
when the body is simply connected and the body-force field is either absent or
uniform, i.e., dead-weight loading,

148 MATERIALS FOR TWO-DIMENSIONAL PHOTOELASTICITY

One of the most important factors in a photoelastic analysis is the selection of
the proper material for the photoelastic model. Unfortunately, a perfectly ideal
photoelastic material does not exist, and the investigator must select from the
list of available materials the one which most closely fits his needs, The quantity
of photoelastic plastic used each year is not sufficient to entice a chemical
company into the development and subsequent production of a polymeric material
especially designed for photoelastic applications. As a consequence, the photo-
elastician must select a model materia] which is commerically available for some
purpose other than photoelasticity.

The following list gives properties which an ideal photoelastic material should
exhibit. These criteria are discussed individually below.

1. The material must be transparent to the light employed in the polariscope.

2. The material should be quite sensitive to either stress or strain, as indicated by
a low material fringe value in terms of either stress £, or strain b

3. The material should exhibit linear characteristics with respect to
a. Stress-strain properties
b. Stress-fringe-order properties
c. Strain—fringe-order properties

4. The material should have both mechanical and optical isotropy and

homogeneity.

. The material should not exhibit time-dependent properties such as creep.

6. The material should exhibit a high modulus of elasticity and a high propor-
tional limit.

7. The material sensitivity, that is, £, or Je» should not change markedly with
small variations in temperature,

8. The material should not exhibit time-edge effects.

194
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9. The material should be capable of being machined by conventional means.
10. The material should be free of residual stresses.
11. The material should not be prohibitively expensive.

A. Transparency

In almost all normal applications the materials selected for photoelastic models
are transparent plastics. These plastics must be transparent to visible light, but
they need not be crystal clear. This transparency requirement is not difficult to
meet since most polymeric materials are colored or made opaque by the addition
of fillers. The raw materials in the basic polymer, although not crystal clear, are
usually transparent, :

In certain special applications which require a study of the stresses in
normally opaque materials, e.g., germanium or silicon, an infrared polariscope has
been used. A few materials are transparent in either the ultraviolet region or the
infrared region of the radiant-energy spectrum. Polariscopes can be constructed to
operate in either of these regions if advantages can be gained by employing light
with very short or very long wavelengths. However, for stress-analysis purposes
the visible-light polariscopes are quite adequate.

B. Sensitivity

A highly sensitive photoelastic material is often desirable since it increases the
number of fringes which can be observed in the model. If the value of ik foria
model material is low, a satisfactory fringe pattern can be achieved in the model
with relatively low loads. This feature reduces the complexity of the loading
fixture and limits the distortion of the model. In the case of birefringent coatings,
which will be discussed later, a material with a low value of /. is essential to reduce
errors introduced by the coating thicknesses.

Photoelastic materials are available with values of [, which range from less
than 0.2 to over 2000 Ib/in (0.035 to 350 kN/m). The situation regarding values of
fe 1s not so satisfactory since materials with a sufficiently low value of f, are not yet
available (f, usually ranges between 0.0002 and 0.02 in or from 0.005 to 0.50 mm).
A material with a value of f; = 0.00002 in (0.0005 mm) would greatly enhance the
applicability of the birefringent coating method of photoelasticity.

C. Linearity

Photoelastic models are normally employed to predict the stresses which occur in
a metallic prototype. Since model-to-prototype scaling must be used to establish
prototype stresses, the model material must exhibit linear stress-strain, optical-
stress, and optical-strain properties. Very few data are available in the open litera-
ture on optical-strain relationships; however, since the photoelastic method is
usually employed to determine stress differences, this lack of data on strain beha-
vior is not considered serious. Typical stress-strain curves and stress—fringe-order
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Figure 14.15 Typical (a) stress-strain and (b) stress-optical response curves for a polymeric
photoelastic material.

nonlinear materials,

D. Isotropy and Homogeneity

Most photoelastic materials are prepared from liquid polymers by casting be-
tween two glass plates which form the mold. When the photoelastic materials are
prepared by a casting process, the molecular chains of the polymer are randomly

rolling or stretching. These malterials will exhibit anisotropic properties (both
mechanical and optical) and should therefore be avoided in any photoelastic
application except those where anisotropic material properties are required.

E. Creep

Unfortunately, most photoelastic materials of a polymeric base creep both me-
chanically and optically over the time associated with a photoelastic analysis.
Because of the effects of mechanical and optical creep, polymeric materials cannot
be truly characterized as elastic materials but must be considered viscoelastic.
One of the first attempts to formulate a mathematical theory of photo-
viscoelasticity was made by Mindlin [26] by considering a generalized viscoelastic
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model consisting of m elastic elements with a shear modulus G, (k=1,23,...,m)
and m viscous elements with a viscosity coefficient 7, (k=1,23,...,m) (see
Fig. 14.16). Assuming that the photoelastic effect results from only the deforma-
tion of the elastic elements of the model, Mindlin showed that the relative retarda-
tion, expressed as n; — n,, could be related to the stress and strain as

(ny — ny) cos 26, = R[(c; — o,) cos 20,] + 28[(e; — €;) cos 20,] (14.35)

where n; — n, = relative retardation
0., 0,, 0, = angles between principal optical, principal stress, principal
strain, and x axis, respectively
R, S = linear operators of types relating stress and strain in viscoelastic
theory :
The operators R and S depend upon the viscoelastic model.

For the three-element elastic model shown in Fig. 14.16, which exhibits in-
stantaneous and delayed elasticity but no flow (7; = o), the operators R and S
can be expressed as
nd ng
— H;O_l (ci—c;) S= 3%2 (14.36)
These equations show that the birefringence is due to both stress and strain but is
independent of stress rate and strain rate. Coker and Filon [3, p. 272] have found
that the material xylonite follows this particular viscoelastic model.

It is evident from these results that the optical response exhibited by a pho-
toelastic model depends upon the viscoelastic properties of the model material. In

Gy Gy
G4 i
i G2 72 G2 72
Gy T Ll_‘ M3

Three-element

Four-element model
i model
I
1
G
Gm Tm Go 72
g
Generalized Kelvin model Maxwell model

model

Figure 14.16 Generalized model and elementary viscoelastic models.



the most general case, the retardation can be a function of stress, strain, strain rate,
and stress rate. F ortunately, most of the polymers used in photoelasticity are
linearly viscoelastic. With linearly viscoelastic materials, the stress and strain,
which vary with both position and time, can be represented by the product of two
functions: one in Space coordinates only and the other in a time coordinate only:

D ) =0(x ))f () erx, y, 1) < e(x, y)g(r) (14.37)
When Egs. (14.37) hold, it can be shown that

0,=6,=0, Uy =ny = Clila; — a5) Ry — 1y = c(t)(e; — €)
(14.38)

where  C(t) = R[f()] + GIO Sla@]  c() = GoR[f(1)] + S[g(e)]

0i —0,

2(e; — &)

This series of equations implies that Egs. ( 13.8) and (13.12) can be rewritten in the
following forms:

and Gy =

Gt %’ Fsinie i % 10 (14.39)

where f, and £, are written as functions of time rather than as constants.
The results of Egs. (14.39) are significant since they show that viscoelastic

Stress fringe value 1
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Figure 14.17 Typical curve showing the time-after-loading dependence of the stress fringe value
in a viscoelastic polymeric material.
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model materials, the stress fringe value £, decreases rapidly with time immediately
after loading but then tends to stabilize after about [ h. In practice, the load is

then photographed, and the stable material fringe value associated with the time
of the photograph is used for the analysis. It should be noted that photoelastic
materials vary from supplier to supplier and from batch to batch; hence, each
sheet of material must be calibrated at the time of the photoelastic analysis to
determine J4(t). Also, in certain photoelastic materials, the polymerization process
continues, and f, changes with time on a scale of months. Hence, a piece of

material stored for a year will, in general, exhibit a higher value of /, than the fresh
material.

F. Modulus of Elasticity and Proportional Limit

The modulus of elasticity is important in the selection of a photoelastic material
because the modulus controls the distortion of the model due to the applied
stresses. If a model distorts appreciably, the geometry of its boundary will change
and the photoelastic solution 18 no longer accurate. Errors of considerable magni-
tude are produced by model distortion, where small changes in the boundary
contour are influential in determining the stress distribution. For example, a strip

regard to their ability to resist distortion is 1/, or E/f,(1 + v). The best pho-
toelastic materials to resist distortion will exhibit high values of 1/ J. or low values
for the material fringe value in terms of strain. Since Poisson’s ratio for most rigid
polymeric photoelastic materials varies over a limited range between 0.36 and
0.42, the ratio Q = E/f, is sometimes used to evaluate the merits of the materials.
This factor E/f, is known as the figure of merit.

The proportional Iimit op Of a photoelastic material is important in two
respects. First, a material with a high proportional limit can be loaded to a higher
level without endangering the safety of the model (it should be noted here that the
polymers normally employed in photoelastic work exhibit a brittle fracture and as
such fail disastrously when the ultimate load is reached). Second, a material with a
high proportional limit can produce a higher-order fringe pattern which tends to
improve the accuracy of the stress determinations, A sensitivity index for a mode]
material can be defined as

O pi
S 2l (14.40)
T
Superior model materials exhibit high values for both the sensitivity index S and
the figure of merit 0.
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G. Temperature Sensitivity [27]

If the material fringe value in terms of stress changes markedly with temperature,
errors can be introduced in a photoelastic analysis by minor temperature varia-

linear region of this curve where f, decreases slightly with temperature. For one
commonly used epoxy, the change in f, is only 0.07 1b/(in)(°F) [0.022 kN/(m)(°C)]
in this linear region. However, at temperatures in excess of 150°F (65°C), the value
of f, begins to drop sharply with increase In temperature, as shown in Fig. 14.18.
For conventional two-dimensional photoelastic studies conducted at room tem-
perature (75°F or 24°C), the slope of the curve in the linear region is the important
characteristic. For most of the commonly used materials the slope is modest in
this region, so that variations in f, can be neglected if temperature variations are
limited to the range of +5°F (+3° ).

H. Time-Edge Effect [28, 29]

When a photoelastic model is machined from a sheet of plastic and examined
under a no-load condition as a function of time, it is noted that a stress is induced
on the boundary which produces a fringe or a series of fringes that parallel the

effect is illustrated in F ig. 14.19.

The influence of these time-edge effects on a photoelastic analysis is quite
important. The fringe pattern observed is due to the superposition of two states of
stress, the first associated with the load and the second 2 result of the time-edge
stresses. Since the time-edge stresses are the most predominant on the boundary,
the errors introduced by the edge stresses may be quite large in the determination
of the extremely important boundary stresses.

It has been established that the time-edge effect is caused by diffusion of water
vapor from the air into the plastic or from the plastic into the air.

For many photoelastic plastics, the diffusion process is so slow at room
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Figure 14.19 Time-edge stresses in a photoelastic model of a turbine-blade dovetail joint (note the
distortion of the fringe pattern near the boundary due to time-edge stresses)
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temperature that it requires many years to reach an equilibrium state. For this
reason, a freshly machined edge of a model usually will be in a condition to accept
water from the air (its central region has not been saturated), and time-edge
stresses will begin to develop. The rate at which the time-edge stresses develop for
a particular model will depend upon the relative humidity of the air and the
temperature. Photoelastic tests conducted at relative humidities of greater than 80
percent are often difficult, for the time-edge stresses become objectionably large in
less than 2 to 3 h. For most photoelastic plastics the proper procedure to avoid
time-edge stresses is to select relatively dry days (relative humidity less than 40 to
50 percent) and to photograph the model as soon as possible after completing the
machining process.

The epoxy resins are somewhat different from most other photoelastic mate-
rials in that their diffusion rate is sufficiently high that a saturated condition can
be established after about 2 to 3 months. If a two-dimensional model is machined
from a sheet of material that has been maintained at a constant humidity for
several months so that it is in a state of equilibrium (concentration uniform
through the thickness of the sheet), and if the model is tested under these same
humidity conditions, time-edge stresses will not develop.

I. Machinability

Photoelastic materials must be machinable in order to form the complex models
employed in photoelastic analyses. Ideally, it should be possible to turn, mill,
route, drill, and grind these plastics. Although machinability properties may
appear to be a trivial requirement, it is often extremely difficult to machine a
high-quality photoelastic model properly. The action of a cutting tool on the
plastic often produces heat coupled with relatively high cutting forces. As a
consequence, boundary stresses due to machining can be introduced permanently
into the model, making it unsuitable for a quantitative photoelastic analysis.

In machining photoelastic models, care must be taken to avoid high cutting
forces and the generation of excessive amounts of heat. These requirements can
best be accomplished by using sharp carbide-tipped tools, air cooling, and light
cuts coupled with a relatively high cutting speed. For two-dimensional applica-
tions, complex models may be routed from almost any thermosetting plastic. In
this machining method a router motor (20,000 to 40,000 r/min) is used to drive a
carbide rotary file. The photoelastic model is mounted to a metal template which
describes the exact shape of the final model. The plastic is rough-cut with a jigsaw
to within about ¢ in (3 mm) of the template boundary. The final machining opera-
tion is accomplished with the router, as illustrated in Fig. 14.20. The metal tem-
plate is guided by an oversize-diameter pin which is coaxial with the rotary file.
The rate of feed along the boundary of the model is carefully controlled by moving
the model along the pin by hand. Successive cuts are taken by reducing the
diameter of the stationary pin until it finally coincides with the cutter diameter. By
using this technique, satisfactory two-dimensional models can be produced in less
than 1 h by skilled operators.
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A Figure 14.20 Machining a two-
dimensional photoelastic model
with a router.

J. Residual Stresses

Residual stresses are sometimes introduced into photoelastic plastics during cast-
ing and curing operations and almost always by rolling or extrusion processes.
They can be observed simply by inserting the sheet of material in a polariscope
and noting the order of the fringes in the sheet. The presence of residual stresses in
photoelastic models is extremely detrimental since they are superimposed on the
true stress distribution produced by loading the model. Since it is difficult if not
impossible to subtract out the contribution due to the residual-stress distribution,
the presence of residual stresses in the model material often introduces serious
errors into a photoelastic analysis.

In certain cases it is possible to reduce the level of the residual stresses by
thermally cycling the sheet above its softening point on a flat plate or in an oil
bath. However, it is almost impossible to remove all residual stresses completely
from a sheet of material once they have been introduced by the manufacturing
process. Often it is more expeditious for the photoelastician to cast his own resin
into plates, paying particular attention to the curing cycle and mold-release agent,
than to purchase materials which must be stress-relieved.

K. Cost of Material

Normally the cost of the model material in a photoelastic analysis represents a
very small percentage of the total cost of the investigation. For this reason, the
cost of the materials should not be overemphasized, and the most suitable mate-
rial should be selected on the basis of other parameters, regardless of the apparent
difference in cost of the material on a pound basis. Very few two-dimensional
photoelastic models require more than 1 or 2 1b of sheet plastic; therefore, prices
of $20 to $40 per pound should be considered reasonable if the surface finish is
adequate and the sheet is free of residual stress.

149 PROPERTIES OF COMMONLY EMPLOYED
PHOTOELASTIC MATERIALS [30-39]

A brief examination of the photoelastic literature will show that most polymeric
materials exhibit temporary double refraction and that numerous materials have
been employed in photoelastic analyses. The list will include several types of glass,
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celluloid, gelatin, the glyptal resins, natural and synthetic rubber, fused silica, the
phenolformaldehydes, polycarbonate, allyl diglycol (CR-39), and several composi-
tions of the epoxies and the polyesters. Today, most elastic-stress analyses are
conducted by employing one of the following materials:

1. Columbia resin CR-39
2. Homalite 100

3. Polycarbonate

4. Epoxy resin

5. Urethane rubber

A. Columbia Resin CR-39 |30, 31]

CR-39 is an allyl diglycol carbonate which is produced by reacting phosgene with
diethylene glycol to obtain a chloroformate, which is then esterified with allyl
alcohol to yield a monomer. The monomer is polymerized by heating in the
presence of a catalyst (benzoyl peroxide), and the resultant sheet is 3 crystal-clear
product. The casting operation is performed in such a manner that the final
product in sheet form has surfaces of optical quality. Actually this is the predom-
inant advantage of CR-39, namely, that it is available in large sheets 48 by 60 in
(1.2 by 1.5 m) of a number of different thicknesses with a surface finish which is
nearly optically perfect. The material is quite brittle and is difficult to turn or to
mill; however, it can be readily machined by routing, and a high-quality pho-
toelastic model can usually be produced in less than 1 h.

The material has a relatively low fringe value, indicating sensitivity, but its
sensitivity index S is impaired by the low stress value at which it becomes nonlin-
ear. CR-39 exhibits appreciable creep; therefore, the material fringe value must be
determined as a function of time. The material is less prone to time-edge effects
than the epoxies but more susceptible to time-edge effect than the polyesters
(Homalite 100) or polycarbonate.

B. Homalite 100

Homalite 100 is a polyester resin which is cast between two plates of glass to form
very large sheets. The surfaces of the commercially available sheets are of optical
quality, and the material is free of residual stresses. Models can be machined by
routing; however, since the materia] is extremely brittle, edge chipping can be a
problem.

Homalite 100 does not exhibit appreciable creep; therefore, the material
fringe value can be treated as a constant for loading times in excess of 5to 10 min.
Since moisture absorption is very slow in this material, time-edge effects do not
become apparent for several days even under very humid test conditions. The
material exhibits both a low figure of merit Q and a low sensitivity index S. High
fringe orders cannot be achieved without fracturing the model.
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C. Polycarbonate

Polycarbonate is an unusually tough and ductile polymer which yields and flows
prior to fracture. It is known by the trade name Lexan in the United States and as
Makrolan in Europe. Polycarbonate exhibits both a high figure of merit Q and a
high sensitivity index S. It is relatively free of time-edge effects and exhibits very
little creep at room temperature.

Polycarbonate is a thermoplastic and is produced in sheet form by an extru-
sion process. It is available in large sheets with reasonably good surface character-
istics. Unfortunately, the extrusion process usually produces some residual
birefringence in the sheets. Annealing for an extended period of time at or near the
softening temperature is required to climinate the residual birefringence. The
polycarbonate material is also difficult to machine. Any significant heat produced
by the cutting tool will cause the material to soften and deform under the tool.
Routing can be performed only under water, and side milling is practically impos-
sible. Band sawing and hand filing are often required to produce satisfactory
model boundaries. Since the material exhibits both yield and flow characteristics,
it can also be employed for photoplastic studies. The birefringence introduced in
the plastic state is permanent and is locked into the material on a molecular scale.
This behavior makes the material suitable for three-dimensional photoplasticity
studies.

D. Epoxy Resin [32]

Epoxy resins were first introduced in photoelastic applications in the mid-1950s,
when they were employed predominantly as materials for three-dimensional pho-
toelasticity. However, a brief review of their properties indicates that they are also
quite suitable for use in a wide variety of two-dimensional applications. The
commercial epoxy resins are condensation products of epichlorohydrin and a
polyhydric phenol. The basic monomer can be polymerized by using acid anhy-
drides, polyamides, or polyamines. In general, curing with the acid anhydrides
requires higher temperatures than curing with the polyamides or polyamines.

A wide variety of epoxy materials can be cast into sheet form. The type of the
basic monomer, the curing agent, and the percentage of the curing agent relative
to the basic monomer can be varied to give an almost infinite number of €pOXy
materials. One particular epoxy, ERL-2774 with 50 parts per hundred by weight
of phthalic anhydride, is a material which can be readily adapted for photoelastic
work. This epoxy can be cast into sheets which are light amber in appearance;
however, optical-quality surfaces are difficult to produce, and surface finishing by
fly cutting or milling is frequently required. The epoxies are usually characterized
as brittle materials, but they are easier to machine than the polyesters or CR-39.
Most of the epoxies exhibit better optical sensitivity than Homolite 100 or CR-39;
they are less sensitive than polycarbonate.

Although the material is susceptible to time-edge effects, the rate of diffusion
of water into epoxy is sufficiently high to permit a saturation condition to be

*



TWO-DIMENSIONAL PHOTOELASTICITY 485

achieved in about 2 months. If the sheets are stored until saturated at, say, a 50
percent relative humidity, the model can be cut from the conditioned sheet and
little or no time-edge effect will be noted unless the humidity conditions change.
Finally, the material creeps approximately the same amount as polycarbonate or
Homolite 100 but much less than CR-39.

E. Urethane Rubber [33]

Urethane rubber is an unusual photoelastic material in that it exhibits a very low
modulus of elasticity (three orders of magnitude lower than that of the other
materials listed) and a very high sensitivity, as indicated by anf, value of less than
1 1b/in (0.175 kN/m). The material can be cast between glass plates to produce an
amber-colored sheet with optical-quality surfaces. Except for its very low figure of
merit, the material ranks relatively well in comparison with the other materials
listed. Its strain sensitivity is so low that time-edge effects are negligible; moreover,
in spite of its low modulus, the material exhibits little mechanical or optical creep.
The material can readily be machined on a high-speed router, but it must be
frozen at liquid-nitrogen temperatures before its surfaces can be turned or milled.
The material is particularly suited for demonstration models. Loads applied
by hand are sufficient to produce well-defined fringe patterns, and the absence of
time-edge effects permits the models to be stored for years. Also, the material is so
sensitive to stress that it can be used to study body-force problems if fringe-multi-
plication techniques are employed with thick models. Finally, urethane rubber
can be used for models in dynamic photoelasticity, where its low modulus of
elasticity has the effect of lowering the velocity of the stress wave to less than
300 ft/s (90 m/s) as compared with 6000 ft/s (1830 m/s) in CR-39. The low-
velocity stress waves in urethane-rubber models are easy to photograph with
moderate-speed framing cameras (10,000 frames per second), which are common,
while the high-speed stress waves in CR-39 require high-speed cameras (200,000
frames per second or more) to produce satisfactory fringe patterns for analysis.

F. Conclusions Pertaining to Material Selection

A summary of the mechanical and optical properties of the five photoelastic
materials is presented in Table 14.2. It is clear by comparing the figure of merit Q
and the sensitivity index S that polycarbonate and the epoxies exhibit superior
properties. Unfortunately, the polycarbonate material is difficult to machine, and
the epoxy resin materials require special precautions to minimize time-edge
effects.

Homalite 100 and CR-39 can be used in applications where high precision
and low model distortion are not required. Both have the advantage of being
available in large sheets with optical-quality surfaces. Homolite 100 is often
preferred since it exhibits less creep and exhibits much less time-edge effect than
CR-39. The sensitivity index § of CR-39, howeyver, is significantly less than that of
Homalite 100.
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Table 14.2 Summary of the optical and mechanical properties of several pho-
toelastic materials

Epoxy resin
ERL-2774
Urethane

Property CR-39 | Homalite 100 Polycarbonate | + 1 rubber§
Time-edge effect Poor Excellent Excellent Good | Good | Excellent
Creep Poor Excellent Excellent Good | Good | Excellent
Machinability Poor Good Poor Good | Good | Poor
Modulus of elasticity E:

Ib/in? 250,000 | 560,000 360,000 475,000 | 475,000 | 450

MPa 1725 3860 2480 3275 3275 3
Poisson’s ratio v 0.42 0.35 0.38 0.38 0.36 0.46
Proportional limit Opit

Ib/in? 3000 7000 5000 8000 8000 20

MPa 20.7 48.3 345 9512 55.2 0.14
Stress fringe value f, €:

Ib/in 88 135 40 58 64 1

kN/m 154 23.6 7.0 10.2 1672 0.18
Strain fringe value f, 9:

in 0.00050 | 0.00033 0.00015 0.00017 | 0.00018 | 0.00324

mm 0.0127 | 0.0084 0.0038 0.0043 | 0.0046 | 0.082
Figure of merit Q:

1/in 2840 4150 9000 8200 7400 450

1/mm 112 163 354 321 292 17
Sensitivity index’S:

1/in 34 5 125 138 125 20

1/mm 1.34 2.05 4.92 543 4.92 0.78

T With 50 parts per hundred phthalic anhydride.

I With 42 parts per hundred phthalic anhydride and 20 parts per hundred hexahydrophthalic
anhydride.

§ 100 parts by weight Hysol 2085 with 24 parts by weight Hysol 3562.
T For green light (1 = 546.1 nm).

Urethane rubber is extremely useful in special-purpose applications such as
demonstration models for instructional purposes. Because of its low material
stress fringe value it is also useful for modeling where body forces due to gravity
produce the loads. F inally, urethane rubber can be used to great advantage in
dynamic photoelastic studies, where its low modulus of elasticity results in low-
velocity stress waves which are easy to photograph.

EXERCISES

14.1 Plot the fringe orders as a function of position across the horizontal centerline of the chain-link
model shown in Fig. 14.1.

14.2 Determine the fringe orders associated with the tensile and compressive stress concentrations at
the pinholes of the chain-link shown in Fig. 14.1.



