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CHAPTER

TWO

STRAIN AND THE
STRESS-STRAIN RELATIONS

2.1 INTRODUCTION

In the preceding chapter the state of stress which develops at an arbitrary point
within a body as a result of surface- or body-force loadings was discussed. The
relationships obtained were based on the conditions of equilibrium, and since no
assumptions were made regarding body deformations or physical properties of the
material of which the body was composed, the results are valid for any material
and for any amount of body deformation. In this chapter the subject of body
deformation and associated strain will be discussed. Since strain is a pure geome-
tric quantity, no restrictions on body material will be required. However, in order
to obtain linear equations relating displacement to strain, restrictions must be
placed on the allowable deformations. In a later section, when the stress-strain
relations are developed, the elastic constants of the body material must be
considered.

2.2 DEFINITIONS OF DISPLACEMENT AND STRAIN

If a given body is subjected to a system of forces, individual points of the body will,
in general, move. This movement of an arbitrary point is a vector quantity known
as a displacement. If the various points in the body undergo different movements,
each can be represented by its own unique displacement vector. Each vector can
be resolved into components parallel to a set of cartesian coordinate axes such
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that u, v, and w are the displacement components in the x, ¥, and z directions,
respectively.
Motion of the body may be considered as the sum of two parts:

1. A translation and/or rotation of the body as a whole
2. The movement of the points of the body relative to each other

The translation or rotation of the body as a whole is known as rigid-body motion. _
This type of motion is applicable to either the idealized rigid body or the real
deformable body. The movement of the points of the body relative to each other is
known as a deformation and is obviously a property of real bodies only. Rigid-
body motions can be large or small. Deformations, in general, are small except
when rubberlike materials or specialized structures such as long, slender beams
are involved. ;

Strain is a geomettic quantity which depends on the relative movements of
two or three points in the body and therefore is related only to the deformation
displacements. Since rigid-body displacements do not produce strains, they will be
neglected in all further developments in this chapter. In the preceding chapter two
types of stress were discussed: normal stress and shear stress. This same
classification will be used for strains. A normal strain is defined as the change in
length of a line segment between two points divided by the original length of the
line segment. A shearing strain is defined as the angular change between two line
segments which were originally perpendicular. The relationships between strains
and displacements can be determined by considering the deformation of an arbi-
trary cube in a body as a system of loads is applied. This deformation is illustrated
in Fig 2.1, in which a general point P is moved through a distance u in the x
direction, v in the y direction, and w in the z direction. The other corners of the
cube are also displaced and, in general, they will be displaced by amounts which
differ from those at point P. For example the displacements u*, v*, and w* asso-
ciated with point Q can be expressed in terms of the displacements u, v, and w at
point P by means of a Taylor-series expansion. Thus
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The terms shown in the above expressions are the only significant terms if it is
assumed that the cube is sufficiently small for higher-order terms such as (Ax)?,
(Ay)?, (Az)?, ... to bt neglected. Under these conditions, planes will remain plane
and straight lines will remain straight lines in the deformed cube, as shown in
Fig. 2.1.
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X

Figure 2.1 The distortion of an arbitrary cube in a body due to the application of a system of
forces.

The average normal strain along an arbitrary line segment was previously
defined as the change in length of the line segment divided by its original length.
This normal strain can be expressed in terms of the displacements experienced by
points at the ends of the segment. For example, consider the line PQ originally
oriented parallel to the x axis, as shown in Fig, 2.2. Since y and z are constant
along PQ, Egs. (2.1) yield the following displacements for point Q if the displace-
ments for point P are y, v, and w;

u*=u+g‘;Ax v*=v+§§Ax w*=w+z—;vAx
From the definition of normal strain,
= (@
which is equivalent to
Ax' = (1+¢,,) Ax (b)

As shown in Fig. 2.2, the deformed length Ax’ can be expressed in terms of the
displacement gradients as

(Ax')? = [(1 + %) Ax]2 - (%Ax)z + (%Ax)z (c)
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Figure 2.2 Displacement gradients associated with the normal strain oL

Squaring Eq. (b) and substituting Eq. (c) yields

(1 +e i [1 + 25—;‘ + (%)2 + (%}2 + (g—:)ZJ(Ax)Z

g (0u\?  [O0NZE  [ow)\Z
or € 1+ it (6x) + (6x) + (6x) 1 (2.2a)
In a similar manner considering line segments originally oriented parallel to the
and z axes leads to

ov ov\% [0w\Z [ou\2 '
= — —_— —_— —_— = 2
6 1+2ay+ (6y) i (ay) o (ay) 1 (2.2b)
ow Ow) 2 ou\ 2 v 3
— — — == = — 2
G = DD (62) + (az) +Q(az) 1 (2.2¢)

The shear-strain components can also be related to the displacements by
considering the changes in right angle experienced by the edges of the cube during
deformation. For example, consider lines PQ and PR, as shown in Fig. 2.3. The
angle 6* between P*Q* and P*R* in the deformed state can be expressed in terms
of the displacement gradients since the cosine of the angle between any two
intersecting lines in space is the sum of the pairwise products of the direction
cosines of the lines with respect to the same set of reference axes, Thus

Ju\ Ax | (du Ay Ov Ax ov\ Ay
i ntamtd il SU) b Sl
£as [(1 x 8x) Ax/J(ay Ay/) i (6)6 Ax’) [(1 o 5y) Ay’J
(é’w Ax) (6w Ay
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(d)
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Figure 2.3 Displacement gradients associated with the shear strain y,,.

From the definition of shear strain

i o ‘

4 Vxy = (5 = 9*) (e)
therefore sin y,, = sin (g - 0*) = cos 0* (f)

Substituting Eq. () into Eq. (f) and simplifying yields

B0 (oo owon
ox ) Oy ox)dy 0Ox Oy

sin y,, =

()
Ax" Ay
From Eq. (b)
Ax =(1+¢,)Ax and Ay =(1+¢,) Ay
therefore
ou 0Ov Oudu dvdv . dwow

oy e ol By
(1+ e )1 +¢,)

V5, = arcsin (2.3a)
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In a similar manner by considering two line segments originally oriented parallel
to the y and z axes and the z and x axes

v +6w +avav +8w8w +6_u6u
Oz Oy - oyQz 0y0z soy0z

= i 2:3b
ey T+ o)+ el
tw o wiw  ludu | Gedo
0% 0z 0z 0x - 0z0x . 0z0x%
Vzx = arcsin (230)

(e e )

Equations (2.2) and (2.3) represent a common engineering description of
strain in terms of positions of points in a body before and after deformation. In the
development of these equations, no limitations were imposed on the magnitudes
of the strains. One restriction was introduced, however, when the higher-order
terms in the Taylor-series expansion for displacement were neglected. This restric-
tion has the effect of limiting the length of the line segment (gage length) used.for
strain determinations unless displacement gradients (du/dx, du/dy, ...) in the
region of interest are essentially constant. If displacement gradients change
rapidly with positien in the region of interest, very short gage lengths will be
required for accurate strain measurements.

In a wide variety of engineering problems, the displacements and strains
produced by the applied loads are very small. Under these conditions, it can be
assumed that products and squares of displacement gradients will be small with
respect to the displacement gradients and therefore can be neglected. With this
assumption Egs. (2.2) and (2.3) reduce to the strain-displacement equations
frequently encountered in the theory of elasticity. The reduced form of the equa-
tions is

-« — % (2.4a)
= 25 : (2.4b)
e ‘g—vzv (2.4¢)
Tay = % + Zz (2.4d)
Vpr = ?;) + g (2.4e.)
Vox = % * %: (2:4f)

Equations (2.4) indicate that it is a simple matter to convert a displacement field
into a strain field. However, as will be emphasized later, an entire displacement
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field is rarely determined experimentally. Usually, strains are determined at a
number of small areas on the surface of the body through the use of strain gages.
In certain problems, however, the displacement field can be computed analy-
tically, and in these instances Eqgs. (2.4) become very important.

2.3 STRAIN EQUATIONS OF TRANSFORMATION

Now that the normal and shearing strains in the x, y, z directions have been
determined, consider the normal strain in an arbitrary direction. Refer to Fig. 2.4
and consider the elongation of the diagonal PQ. By definition the strain along PQ
is

=

P*Q* — PQ
G (a)

From geometric considerations, as illustrated in Fig. 2.4,

(PQ)* = (Ax)? + (Ay)* + (A2)* (b)
(P*Q*)* = (Ax*)> + (Ay*)* + (Az*)° (c)

X

Figure 2.4 Displacements of points P and Q in a body which result from the application of a system
of loads.
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In general, the component Ax* will have a different length than the compon-

ent Ax because of the deformation of the body in the x direction. From Fig. 2.4 it
can easily be seen that

du ou Ou
* 5 s i
Ax —(1+6x) Ax+ayAy+azAz
ov ov ov
*=—A — =
Ay o x+(1+ay) Ay+azAZ (@)

d
Az*:a—wa%-‘wAy-F (1 +w) Az
b 0z

If Egs. (d) are substituted into Eq. (c), the length of the deformed line segment
P*Q* can be computed. In the substitution, since the deformations are extremely
small, the products and squares of derivatives can be neglected. Thus

(P*Q*)? — (1 = 2%)(&)2 - (1 = 22;])(Ay)2

ow - du e O

ov Ow ow du
Equation (a) can be rearranged in the following form:
P*Q*
€pg = - E o
P*Q* 2
or (EPQ+1)2=(PQ)

If Egs. (b) and (e) are substituted into this rearranged form of Eq. (), the follow-
ing equation can be obtained after some rearrangement of terms:

1

(€pg + 1)* = cos? (x, PQ) + cos? (y, PQ) + cos? (z, PQ)

2 G
+2 é cos? (x, PQ) + 2 = cos? (y, PQ) + 2 g—;v cos? (z, PQ)

dy
0 0
e 2(%; + %) cos (x, PQ) cos (y, PQ)
5 v  ow P P
o (52 4 a—y) cos (y, PQ) cos (z, PQ)
5 ow  Ou
+2{ - ) <05 (5 PO) cos (5, PQ) ¢
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If the left side of Eq. (f) is expanded, the €2, term can be neglected since it is of the
same order of magnitude as the products and squares of displacement derivatives
which were neglected in a previous step of this development. Recall also that

cos? (x, PQ) + cos? (y, PQ) + cos? (z, PQ) = 1

Thus the basic equation for the strain along an arbitrary line segment is
o g—zcosz (x, PQ) + %cosz (» PQ) + (Z—‘:cosz (z, PQ)
* (% + %) cos (x, PQ) cos (y, PQ)
+ (% + Z—V;) cos (y, PQ) cos (z, PQ)

0
= (5: + ZZ) cos (z, PQ) cos (x, PQ) (2.5a)

Equations (2.4) and (2.5a) can be used to determine ¢,.., by choosing the direction
of PQ parallel to the x’ axis. Then

= Exr = €5 €082 (3, X') + €,, co8% (i, %)
+ €, cos? (z, X') + v, cos (x, x’) cos(y, x')
4 ¥y, €08 (35 x')ic0s (2, XY Py, cos (z, x') cos (x, x) (2.6a)

In a similar manner ¢, and ¢,,,, can be determined by choosing the direction of
PQ parallel to the y" and z’ axes, respectively:

€yy = €, €08” (1, ) + €., cos? (2, ')
+ €4 €052 (%, ¥') + 7,. cos (v, ¥') cos (z, ¥)
+ V2% €08 (2, y') cos (%, ¥') + ¥, cos (x, y) cos (y, ¥) (2.6b)
€nr = €, COS? (2, 2) + €, cO8? (X, 7)
+ €,, €082 (3-2') + 7, €081 (2 2') €05 [, Z)
+ 9y 08 (X, 2} cos (v 20t 9, cos (y, 2') cos (z, z) (2.6¢)
A similar but somewhat more involved derivation can be used to establish the

shearing strains. Consider the angular change in an arbitrary right angle formed
by two line segments PQ; and PQ,. The shearing strain ypg, pg, can be shown
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[3. p. 44] to be given by
7P0s, Po; = 265 05 (x, PQ,) cos (x, PQ,)

+ 2¢,, cos (y, PQ,) cos (y, PQ,)

+ 2¢,, cos (z, PQ,) cos (z, PQ)

+ olo0s (x. PQ,) c0s (1, PQs) + cos (x, PQ,) cos (v, PQ,)]

+ 740005 (1 PQ,) cos (2, PQs) + cos (1, PQ,) cos (2, PO,

+ ¥:21008 (2, PG, ) cos (x, PQ5) + cos (z, PQ,) cos (x, PQ,)]
(2.5b)

By choosing PQ, parallel to x' and PQ, parallel to y, an expression for Vs 18
obtained as follows:

Pxy = 264, €OS (X, X') cos (x, ')
+ 2¢,, cos (y, x') cos (y, y)
+ 2¢,, cos (2, x') cos (z, y')
+ 7508 (x, x') cos (y, ¥') + cos (x, ¥) cos (y, x)]
+ Pyalcos (v, X') cos (z, y') + cos (y, Y') cos (z, x')]
+ Vzx[c0s (z, x’) cos (x, ') + cos (2, ') cos (x, x)] (2.6d)
Similarly
ye = 26,, 008 (3, ¥) cos (1, 2) |
+ 2¢,, ¢os (z, y') cos (z, 2)
+ 2€,, cos (x, ') cos (x, z')
+ 7.lcos (1. V) cos (z, 2) + cos (3, 2') cos (z, )]
+ 7zx[c0s (2, ') cos (x, 2) + cos (z 2) cos (x, )]
+ Yulcos (x, ) cos (y, 2') + cos (x, 2') cos (y, y')] (2.6e)
Yoz = 2€;; €08 (z, Z') cos (z, x')
+ 26, cos (x, Z') cos (x, x')
+ 2€,, cos (y, z') cos (y, x')
+ Vzulcos (2, 2') cos (x, x') + cos (z, X )icos (x, z0)]
+ 75,0008 (x, 2) cos (y, X') + cos (x, X') cos (y, 2)]

+ ye[c0s (, Z') cos (z, x') + cos (3, x) cos (z, 2)] (2.6f)

T Numbers in brackets refer to numbered references at the end of the chapter.
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Equations (2.6a) to (2.6f) are the strain equations of transformation and can be
used to transform the six cartesian components of strain €., €,,, €225 Vxp> Vyzs Vex
relative to the Oxyz reference system to six other cartesian components of strain
relative to the Ox'y'z’ reference system.

A comparison of Egs. (2.6) with the stress equations of transformation
[Eq. (1.6)] shows remarkable similarities:

Oxx € €xx 2Txy S '))xy
O-)’,\’Héyy 2T,vz‘_) yyz (27)
UZZHEZZ ZszHYZx

Here the symbol < indicates an interchange. This interchange is important since
many of the derivations given in the preceding chapter for stresses can be con-
verted directly into strains. Some of these conversions are indicated in the next
section.

2.4 PRINCIPAL STRAINS

From the similarity between the laws of stress and strain transformation it can be
concluded that there exist at most three distinct principal strains with their three
associated principal directions. By substituting the conversions indicated by
Egs. (2.7) into Eq. (1.7), the cubic equation whose roots give the principal strains
is obtained:
63 T (exx gl €yy -+ £zz)Er%
2

2 2
Vxy Vyz Vzx
ar (exxéyy s Eyyezz SMCI GRS e e €n

4 4 4
2 2 2
Y i V. VxyVyz Vex
g (exxeyyézz KL 6xx%z % Eyy—ii — €z f S —x%’) =0 (28)
As with principal stresses, three situations exist:
€& F €6 F €6 € =€ 7 €3 €165 63
The significance of these three cases is determined from the discussion in Sec. 1.6,

page 14.

Similarly, there are three strain invariants which are analogous to the three
stress invariants. By substituting Eqgs. (2.7) into Eqs. (1.8), the following expres-
sions are obtained for the strain invariants:

leexx+eyy+€zz

2 2 2,
Vxy Vyz Vzx
‘.]2 = €Jc.vcéyy o nyezz SE e 7’ €= _i_ T T (29)

2 2 2
R el Cplte _ Caxlay | Vuylyelax
e o 4 4 4
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It is clear that other equations derived in Chap. 1 for stresses could easily be
converted into equations in terms of strains. A few more will be covered in the
exercises at the end of the chapter, and others will be converted as the need arises.

2.5 COMPATIBILITY

From a given displacement field, i.e., three equations expressing u, v, and w as
functions of x, y, and z, a unique strain field can be determined by using Egs. (2.4).
However, an arbitrary strain field may yield an impossible displacement field, i.e.,
one in which the body might contain voids after deformation. A valid displace-
ment field can be ensured only if the body under consideration is simply con-
nected and if the strain field satisfies a set of equations known as the compatibility
relations. The six equations of compatibility which must be satisfied are

Gl e o, - 0%,
X — XX -10
xoy a2 T ox iy
G G, 0%
S e .10b
duap. az> 8y (20
azyzx 62622 azexx
Sl e o e
dae 0 Cie o @) 0y
Dl xx T vz Vizx xy |
8y 0z 6x( oy b ) e
dze oy, dy 0y,
2 }y = o yz - zx xy d
3z ox ay( bt G ) (2
aZEzz a a”))yz a’})zx a'))xy -
ox dy 6z(>6x g7 By &V) (2.107)
In order to derive Eq. (2.10a), begin by recalling A
T =5, T ox %
Differentiating 7., once with respect to x and then again with respect to y gives
%y *u 9%
T, o gy (b)
Note that
GRS *u 66 v
s 0 d 1 el L .
ay® L Gy 3 ax® 0% 0y (©)
Substituting Egs. (c) into Eq. (b) gives
b, s e, )

Gx 6y ay*  ox?
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which establishes Eq. (2.10a), and by the same methods Eqs. (2.10b) and (2.10¢)
could be verified. The proof of Eq. (2.10d) is obtained by considering four -
identities:

dhe), %u
dy 0z 0x y 0z (¢)
y 6z 6x oy oz
azyxy a3u 531)
0x 0z Ox dy 0z 3 0x? 0z (f)
i 3w 0u
Gxdy  ox?dy | ox dy bz )
m GZyyz @3W 631)
" x> ax2a) e (h)
Now by forming
2e) = () + (g) — (1) ()
thus obtaining
026 a 6’}’ 6’}) 6)}
2- > = Y U e R i
Oy 0z (3x( 9z 0y Ox ) ()

Eq. (2.10d) is verified. The remaining two compatibility relations can be estab-
lished in an identical manner.

In order to gain a better physical understanding of the compatibility relations,
consider a two-dimensional body made up of a large number of small, square
elements. When the body is loaded, the elements deform. By measuring angle
changes and length changes, the strains which develop in each element can be
determined. This procedure is accomplished theoretically by differentiating the
displacement field. Consider now the inverse problem. Suppose a large number of
small, deformed elements are given which must be fitted together to form a body
free of voids and discontinuities. If and only if each element is properly strained
can the body be reassembled without voids. The deformed elements correspond to
the case of the prescribed strain field. The check to determine whether the ele-
ments are all properly strained and hence compatible with each other represents
the compatibility relations. If these relations are satisfied, the elements will fit
together properly, thus guaranteeing a satisfactory displacement field.

2.6 EXAMPLE OF A DISPLACEMENT FIELD COMPUTED
FROM A STRAIN FIELD

If a circular shaft of radius a is loaded in torsion, the following strain field is
produced:

Yzx = —4ay yyz =ax Cex = 6yy =€ = yxy =0 (a)
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where the z axis of the reference system is coincident with the centerline of the
shaft. The first step in solving for the displacement field is to check the compatibi-
lity conditions:

1. The body must be simply connected, a condition which is obviously satisfied in
this case.

2. The strain relations given in Egs. (a) must satisfy all the compatibility relations
given in Egs. (2.10). It is clear that this linear system of strains does satisfy this
requirement.

Next substitute Egs. (a) into Egs. (2.4) and integrate:
ou

€xx_ &" 0 u :f(y’ Z)
ov
6y)’:@=0 U—“—g(x,z)
ow
€, = = 0 w = h(x, y) (b)
—al+al_0=8f(y, Z)+(9g(x, Z)

L ay dx

The last of Egs. (b) can be satisfied only if both right-hand terms are functions
of z alone; hence

A7) _ gl )
) ©

Integrating Eq. (c) gives
fle)=yF@)+Ci=u g(z)= —xF(z)+C,=v (d)
Recall the value of y,, from Egs. (a), the definition of y,, from Eq. (2.4e), and the
functional relation for w from the third of Egs. (b) and form
oh
dw o dhey) dF()

T Qv 0z dy dz (©)

Equation (e) can be satisfied if and only if both the right-hand terms are functions
of x alone; hence

Oh(x) dF(z)
W--H(x) S (f)

Substituting Egs. (f) into Eq. (e) gives
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Integrating the second of Egs. (f) yields

F(z) = Cyz+C, (h)
Substituting Eq. (h) into Eqgs. (d) gives
u=y(Csz+Cy) + C, v=—x(C3z+ C4) + C, (@)
By Egs. (b), (/), and (g),
w=he )= [HE) oy =[ @+ Cxdy=la+Chy+Cs ()

Thus far five constants of integration have been introduced, and five of the six
cartesian components of strain which were given have been used. By employing

the last strain relation, the arbitrary constant C; can be evaluated. Recall from
Egs. (a):

ow du
Ten = B 52(0+C3)y+c3y=——ay Co=—a (k)

Substituting Egs. (k) into Egs. (i) and (j) gives
u=—ayz+ Cuy + C, vi=taxz—C,x+ C, w=Cs ()

The constants Cy, C,, and C; indicate rigid-body translation of the shaft. The
constant C, indicates rigid-body rotation of the shaft. It is clear upon differentia-
tion that C,, C,, C5, and C, do not enter into the strains produced in the shaft
and hence are not a part of the displacement due to deformation. The deformation
displacements are given by

u= —ayz v =axz w=0 (m)

As indicated by this simple example, the process by which the displacement
field is calculated from a given strain field is quite lengthy. On the other hand, it is
a very simple matter to go from a complex displacement field to a strain field.

2.7 VOLUME DILATATION

Consider a small, rectangular element in a deformed body which has its edges
oriented along the principal axes. The length of each side of the block may have
changed; however, the element will not be distorted since there are no shearing
strains acting on the faces. The change in volume of such an element divided by
the initial volume is, by definition, the volume dilatation D, that is,

V-V
D=
14

where V is the initial volume, equal to the product of the three sides of the element,
ai, a,, as, before deformation and V* is the final volume after straining, equal to
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the product of the three sides af, a%, a¥, after deformation. Since
af=a,(l+¢) af=a)l+e) af=ayl+e)
it follows that

_a18,05(1 + &4)(1 + 6)(1 + &) — a,a5a5
3 a;a,as

D

If the higher-order strain terms are neglected,
D=¢, +e,+¢5=J, (2.11)

Equation (2.11) indicates that the volume dilatation D is equal to the first invar-
iant of strain. Since the first invariant of strain is independent of the coordinate
system being used, the volume dilatation of an element is independent of the
reference frame forming its sides. Volume dilatation is thus a coordinate-
independent concept.

2.8 STRESS-STRAIN RELATIONS

Thus far stress and strain have been discussed individually, and no assumptions
have been required regarding the behavior of the material except that it was a
continuous medium.f In this section, stress will be related to strain; therefore,
certain restrictive assumptions regarding the body material must be introduced.
The first of these assumptions regards linearity of the stress versus strain in the
body. With a linear stress-strain relationship it is possible to write the general
stress-strain expressions as follows:

O = Kyg€, b IS St Kne,, + Ky it Koy, + Kigy, .
0y = Kjy€ + Kpg€,, + Kps€, + Koy sy + Kosyy, + Kogvax
0., = Kagt,, FGHc S Kont,, + Koy Vo + Kasy,, + Ko, (2:17)
Ty = Kar€ox + Kys€y, + Kuzép, + Kyyy,, + K€5 Yo K A
T, = Ksi€ + Ksp€,, + Ksae,, + Ksyyy, + Kssyy, + Ksgvax
T8 = Kei6or + K g6, s K, + Koy yey + Kes v,z + KogVox

where K, to K¢ are the coefficients of elasticity of the material and are indepen-
dent of the magnitudes of both the stress and the strain, provided the elastic limit
of the material is not exceeded. If the elastic limit is exceeded, the linear relation-
ship between stress and strain o longer holds, and Egs. (2.12) are not valid.
There are 36 coefficients of elasticity in Egs. (2.12); however, they are not all -
independent. By strain energy considerations, which are beyond the scope of this

T Actually most metals are not strictly continuous since they are composed of a large number of
rather small grains. However, the grains are in almost all cases small enough in comparison with the
size of the body for the body to behave as if it were a continuous medium.
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book, the number of independent coefficients of elasticity can be reduced to 21.
This reduction is quite significant; however, even with 21 constants, Egs. (2.12)
may be considered rather long and involved. By assuming that the material is
isotropic, ie., that the elastic constants are the same in all directions and hence
independent of the choice of a coordinate system, the 21 coefficients of elasticity
reduce to two constants. The stress-strain relationships then reduce to

O, = AJ 1 + 2ue,., 0, = AJy + 2pue,, Gro= A D
Txy T Nyxy Tyz = luyyz rzx = #yzx (2‘13)

where J, = first invariant of strain (e, + Ehere)

A = Lamé’s constant

p = shear modulus /
Equations (2.13) can be solved to give the strains as a function of stres§, D

J

\%; €ex 7 #ﬁzﬂ) Oxx — m&rw i Gzz) 7 \ b (\\
: e
€y = ﬁ—)’aw = m(om -+ G'zz) &
= y(jﬁﬂzu) % = 2aBlE 20) 0 T )
Vay = ;rxy Voz = ;ryz Yoz = irzx (2.14)

The elastic coefficients u and A shown in Egs. (2.13) and (2.14) arise from a
mathematical treatment of the general linear stress-strain relations, In experimen-
tal work, Lamé’s constant 4 is rarely used since it has no physical significance;
however, as will be shown later, the shear modulus has physical significance and
can easily be measured.

Consider a two-dimensional case of pure shear where

Oux =0y =0, =T, =17,=0 7., = applied shearing stress
From Egs. (2.14),

p= s (2.15a)
’yxy

Hence, the shear modulus p is the ratio of the shearing stress to the shearing strain
“in a two-dimensional state of pure shear.
In a conventional tension test which is often used to determine the mechanical

properties of materials, a long, slender bar is subjected to a state of uniaxial stress
in, say, the x direction. In this instance

O =0 —T =T —1 0., = applied normal stress
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From Egs. (2.14),

e i (a)
xx_lu(3)b+2u) XX

A
eyy=ezz= —mﬂxlx (b)

In elementary strength-of-materials texts, the stress-strain relations for the case of
uniaxial stress are often written

€xx = E Oxx (C)
5
€y = €z = — E Oxx (d)
By equating the coefficients in Eqgs. (a) and (b) to those in Egs. (c) and (d),
134 + 2p)
B 2.15b
it (2.15b)
A
- il
v A+ ) (2.15¢)
where E is the modulus of elasticity and v is Poisson’s ratio, defined as
L Eﬂ (2.15d)

XX

Equations (2.15b) and (2.15¢) indicate the conversion from Lamé’s constant A and
the shear modulus p to the more commonly used modulus of elasticity E and
Poisson’s ratio v. :

To establish the definition and physical significance of a fifth elastic constant,
consider a state of hydrostatic stress where

Oxx =0y, =0, = —P Txyzryzztzxzo

where p is the uniform pressure acting on the body.
Adding together the first three of Eqs. (2.13) gives

—3p = (34 + 2u)J,

s -
or P Jg =l R KD
Thus
304+ 2u p
K — N (2.15¢)

The constant K is known as the bulk modulus and is the ratio of the applied
hydrostatic pressure to the volume dilatation.
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Table 2.1 Relationships between the elastic constants

A U E v K
equals equals equals equals equals
i w34 + 2p) A 34+ 2u
o ) 20 + ) 3
i AT + (E — 34) At —(E+A)| AT+ (34 +E)
: 4 44 6
A1 —2v) A1+ v)(1 = 2v) AM1+v)
AV
2v v 3y
o~ 3(K -4 9K(K — 4 A
g (K -4 (k- )
2 3K -2 3K -4
- #2u — E) E—2yu HE
”’ E - 3u 2u 3Bu— E)
2uv 2u(l + v)
2u(1
g =) ) 3(1—2v)
. 3 — 25 9Ky Ik
& 3 3K+ 203K + 1)
vE E E
E, v rtlarirE iy oe o
(T4+v)(1—=2v)| 2(1+v) 3(1 —2v)
3K(3K — E) 3EK 3K -5
K E =
9K —E 9K — B ‘ 6K
v K ol L) 3K(1 - 2v)
1+ 2(1+v)

t A=./E* + 2AE + 912,

Five elastic constants A, u, E, v, and K have been discussed. The constant A has
no physical significance and is employed because it simplifies, mathematically
speaking, the stress-strain relations. The constant u has both mathematical and
physical significance. It is used extensively in torsional problems. The constants E
and v are the most widely recognized of the five constants considered and are used
in almost all areas of stress analysis. The rather specialized bulk modulus K is
used primarily for computing volume changes in a given body subjected to
hydrostatic pressure. As indicated previously, there are two and only two indepen-
dent elastic constants. The five constants discussed are related to each other as
shown in Table 2.1.

Since the constants £ and v will be used almost exclusively throughout the
remainder of this text, Egs. (2.15b) and (2.15¢) have been substituted into Egs.
(2.13) and (2.14) to obtain expressions for strain in terms of stress and the
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constants
1
€xx = E [axx V(ny ar O-zz)]
1
6yy = E [Uyy Sy v(o-xx = O-zz)]
1
€ E-[ou v(o,, + 0.
2(1+v) 2(1+v) 2(1 +v)
yxy S E 7‘-ch yyz = E Tyz yzx == E TZx (216)

and for stress in terms of strain and the constants

T m [(1 e V)Exx + V(éyy it ezz)]
i m e ol e ]
E

o= gy 0 e+ e+ )

E E E
=5 i =— 20047
Txy 2(1 v) ny Tyz 2(1 v) yyz Tox 2(1 V) Yzx ( )

2.9 STRAIN-TRANSFORMATION EQUATIONS AND
STRESS-STRAIN RELATIONS FOR A TWO-DIMENSIONAL
STATE OF STRESS

Simplified forms of the strain-transformation equations and the stress-strain rela-
tions, which will be extremely useful in later chapters when brittle coating and
electrical-resistance strain-gage analyses are discussed, are the equations applic-
able to the strain field associated with a two-dimensional state of stress
(O-zz = sz = sz = O)

The strain-transformation equations can be obtained from Egs. (2.6) by
selecting z’ coincident with z and noting from Egs. (2.16) that y,, = y,, = 0. The
notation can also be simplified by denoting the angle between x’ and x as 0. The
equations obtained are

€xx = €xx €OS” B4 €, sin? 6 + 9, sin 0 cos 6
€yy = €, COS* 0 + ¢, sin® 6 — v, sin 6 cos 6
Vary = 2(€,, — €4) sin O cos 6 + y,,(cos® 6 — sin? 6) (2.18)

Ez’z’ = 6zz Vyz' = })z’r = 0
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The stress-strain relations for a two-dimensional state of stress are obtained
by substituting ¢,, = 7, = 1,, = 0 into Egs. (2.16). Thus

: ¥
Cox = E (axx = Vo'w) 6)’37 = E (ny = VO'xx) o -E— (GII = ny)
2(1 +v
Vxy = —(—EI)Txy = 0 (219)

In a similar manner the equations for stress in terms of strain for the two-
dimensional state of stress are obtained from Egs. (2.17). Thus

& E E

Cux= T3 (€ T VEy) Oy = o (65 + ves)

E
G Selnaa: 2.20
Tyz 0 Txy 2(1 2 V) ‘yxy ( )

O-ZZ = sz

One additional relationship which relates the strain ¢, to the measured
strains ¢, and €, in experimental analyses is obtained from Eq. (2.17) by substi-
tuting g,, = 0. Thus

v
€= Tiuw (€xx + €yy) (2.21)

This equation can be used to establish the magnitude of the third principal strain
associated with a two-dimensional state of stress. This information is useful for
maximum shear-strain determinations.

EXERCISES

2.1 Given the displacement field
u=(0Cx*+2x%y* +x+y+2° +3)(107%)
v=(3xy+y> + y*z+ 22+ 1)(1073)
w=x2+xy+yz+zx+y?+22+2)(107%)

Compute the associated strains at point (1, 1, 1). Compare the results obtained by using Egs. (2.2) and
(2.3) with those obtained by using Egs. (2.4).

2.2 Given the displacement field
u= (x> + y* + 2y%z + yz)(107°)
v = (xy + xz + 3x%2)(107?)
w=(y* + 4y +222)(1073)

Compute the associated strains at point (2, 2, 2). Compare the results obtained by using Eqgs. (2.2) and
(2.3) with those obtained by using Egs. (2.4).



