CHAPTER

THREE

BASIC EQUATIONS AND
PLANE ELASTICITY THEORY

3.1 FORMULATION OF THE PROBLEM

In the general three-dimensional elasticity problem there are 15 unknown quanti-
ties which must be determined at every point in the body, namely, the 6 cartesian
components of stress, the 6 cartesian components of strain, and the 3 components
of displacement. Attempts can be made to obtain a solution to a given problem
after the following quantities have been adequately defined:

I The geometry of the body

2 The boundary conditions

3. The body-force field as a function of position

4. The elastic constants

In order to solve for the above-mentioned 15 unknown quantities, 15 independent
equations are required. Three are provided by the stress equations of equilibrium
[Eas. (1.3)]. six are provided by the strain-displacement relations [Eqs. (2.4)], and
ilhe remaining six can be obtained from the stress-strain expressions [Egs. (2.16)].

A solution to an elasticity problem, in addition to satisfying these 15 equa-
foms, must also satisfy the boundary conditions. In other words, the stresses
ctimg over the surface of the body must produce tractions which are equivalent to
live loads being applied to the body. Boundary conditions are often classified to
dicime the four diffieremt types of boundary-value problem listed below:
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52 ELEMENTARY ELASTICITY

Type 1. If the displacements are prescribed over the entire boundary, the problem
is classified as a type 1 boundary-value problem. As an example, consider a
long, slender rod which is given an axial displacement, say, u and transverse
displacements v and w. In this instance displacements are prescribed over the
entire boundary of the rod.

Type 2. The most frequently encountered boundary-value problem is the type
where normal and shearing forces are given over the entire surface. For
instance, a sphere subjected to a uniform hydrostatic pressure has zero shear-
ing stress and a normal stress equal to — p on the surface and hence is a type 2
boundary-value problem.

Type 3. This is a mixed boundary-value problem where the normal and shearing
forces are given over a portion of the boundary and the displacements are
given over the remainder of the body. To illustrate this type of problem,
consider the shrinking of a sleeve over a shaft. In the shrinking process a
radial displacement is given to the sleeve at the interface between the shaft and
the sleeve. On all other surfaces of the sleeve, both the normal and the shear-
ing components of stress are zero.

Type 4. This type of boundary-value problem is the most general of the four
considered. Over a portion of the surface, displacements are prescribed. Over
a second portion of the surface, normal and shearing stresses are prescribed.
Over a third portion of the surface, the normal component of displacement
and the shearing component of stress are prescribed. Over a fourth portion of
the surface, the shearing component of displacement and the normal compon-
ent of stress are prescribed. Obviously, the first three types of problem can be
regarded as special cases of this general fourth type.

One of the most difficult problems encountered in any experimental study is
the design and construction of the loading fixture for applying the required
displacements or tractions to the model being studied. The classifications given
previously should be kept in mind when one designs the fixture. In general, it has
been found that tractions cannot be adequately simulated by applying a displace-
ment field to the model and vice versa. Type 1 and type 2 boundary-value prob-
lems are usually the easiest to approach experimentally. In general, type 3 and
type 4 problems offer more difficulties in properly loading the model.

3.2 FIELD EQUATIONS

Thus far in the development four sets of field equations have been discussed,
namely, the stress equations of equilibrium, the strain-displacement relations, the
stress-strain expressions, and the equations of compatibility. Quite often two or
more of these sets of equations can be combined to give a new set which may be
more applicable to a specific problem. As an example, consider the six stress-
displacement equations which can be obtained from the six stress-strain relations
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and the six strain-displacement equations by substituting Egs. (2.4) into
Egs. (2.16).
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It is interesting to note that the set of equations consisting of the stress equations
of equilibrium [Egs. (1.3)] and the stress-displacement relations [Egs. (3.1)] are
expressed as nine equations in terms of nine unknowns. The reduction in the
number of unknowns from 15 to 9 was made possible by eliminating the strains.

The problem can be reduced further (from nine to three unknowns) if the
stress equations of equilibrium [Egs. (1.3)] are combined with the stress-
displacement equations (3.1). The displacement equations of equilibrium obtained
can be written as follows:
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where V2 is the operator 02/0x? + 0%/0y* + 0%/0z%. .

It is clear that a solution of the displacement equations of equilibrium will
yield the three displacements u, v, w. Once the displacements are known, the six
strains and the six stresses can easily be obtained by using Egs. (2.4) to obtain the
strains and Egs. (2.16) to obtain the stresses.

Analytical solutions for three-dimensional elasticity problems are quite
difficult to obtain, and the number of problems which have been solved in an exact
fashion to date is surprisingly small. The most successful approach to date has
been through the use of the Boussinesq-Popkovich stress functions, which are
defined so as to satisfy Eq. (3.2). The development of this approach is somewhat
involved and is therefore beyond the scope and objectives of this elementary
treatment of the theory of elasticity. The interested student should consult the
selected references at the end of the chapter for a detailed development of the
Boussinesq-Popkovich stress-function approach.
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Before this section is completed, the stress equations of compatibility will be
developed since they are the basis for an important theorem regarding the depen-
dence of stresses on the elastic constants. If the stress-strain relations [Egs. (2.16)],
the stress equations of equilibrium [Egs. (1.3)], and the strain compatibility equa-
tions [Eqs. (2.10)] are combined, the six stress equations of compatibility are
obtained as follows:
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where I, is the first invariant of stress Oh 0, 0, and F,, F,, F, are the
body-force intensities in the x, y, z directions, respectively.

If this system of six equations is solved for the six cartesian stress components,
and if the boundary conditions are satisfied, the problem can be considered
solved. Of great importance to the experimentalist is the appearance of elastic
constants in Eqgs. (3.3). Recall that equations of stress equilibrium did not contain
elastic constants. Since only Poisson’s ratio v appears in Egs. (3.3), it follows that
the stresses are independent of the modulus of elasticity E of the model material
and can at most depend upon Poisson’s ratio alone. Of course, this is true only for
a simply connected body since the strain compatibility equations are valid only
for this condition.

This independence of the stresses on the elastic modulus is very important in
three-dimensional photoelasticity, where a low-modulus plastic model is used to
simulate a metal prototype. Only the difference in Poisson’s ratio between the
model and the prototype is a source of error. The very large difference between the
moduli of elasticity of the model and the prototype does not produce any
significant errors in the determination of stresses using a three-dimensional pho-
toelastic approach, provided the strains induced in the photoelastic model remain
sufficiently small.




Figure 3.1 A body which may be
considered for the plane-elasticity
approach is bounded on the top
and bottom by two parallel planes
and is bounded laterally by any

surface which is normal to the top
= 8, (Lateral surface) and bottom planes,

3.3 THE PLANE ELASTIC PROBLEM

In the theory of elasticity there exists a special class of problems, known as plane
problems, which can be solved more readily than the general three-dimensional
problem since certain simplifying assumptions can be made in their treatment.
The geometry of the body and the nature of the loading on the boundaries which
permit a problem to be classified as a plane problem are as follows:

By definition a plane body consists of a region of uniform thickness bounded by
two parallel planes and by any closed lateral surface B, , as indicated by Fig 31,
Although the thickness of the body must be uniform, it need not be limited. It may
be very thick or very thin; in fact, these two extremes represent the most desirable
cases for this approach, as will be pointed out later.

In addition to the restrictions on the geometry of the body, the following restric-
tions are imposed on the loads applied to the plane body:*

1. Body forces, if they exist, cannot vary through the thickness of the region, that
18, F, = F (x, y)and F » = Fy(x, y). Furthermore, the body force in the z direc-
tion must equal zero.

2. The surface tractions or loads on the lateral boundary B, must be in the plane
of the model and must be uniformly distributed across the thickness, i.e., con-
stant in the z direction. Hence, i =Ly =T, y)and T, = 0.

3. No loads can be applied on the parallel planes bounding the top and bottom
surfaces, that is, T,=0onz= ¢

Once the geometry and loading have been defined, stresses can be determined
by using either the plane-strain or the plane-stress approach. Usually the plane-
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strain approach is used when the body is very thick relative to its lateral dimen-
sions. The plane-stress approach is employed when the body is relatively thin in-
relation to its lateral dimensions.

3.4 THE PLANE-STRAIN APPROACH

If it is assumed that the strains in the body are plane, i.e., the strains in the x and y
directions are functions of x and y alone, and also that the strains in the z
directions are equal to zero, the strain-displacement relation [Egs. (2.4)] can be
simplified as follows:

xx_ax yy—ay 22_82_
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Similarly, if Eqs. (3.4) are substituted into Egs. (2.13), a reduced form of the
stress-strain relations for the case of plane strain is obtained:

Oxx = j‘Jl * 2.uexx Flyyis AJI it 2#€yy = A'Jl
Tyy=HYxy  Tpe=Tox =0 (3:5)

where J; = ¢, + ¢,,. In addition, the stress equations of equilibrium [Egs. (1.3)]
reduce to
do ot ot
=4+ -4+ F.=0
0x 0y S
Any solution for a plane-strain problem must satisfy Egs. (3.4) to (3.6) in addition
to the boundary conditions on the lateral boundary B; and the bounding planes.
The boundary conditions on B; can be expressed in terms of the stresses by
referring to Egs. (1.2), which give the x, y, and z components of the resultant-stress
vector in terms of the cartesian components of stress. Thus, on B, the following
relations must be satisfied:

A Oayy

0x Jy

+F,=0 (3.6)

T,. = 0, co0s (n, x) + 7,, cos (n, )

T,y = T4y €08 (1, X) + 0, cos (1, y) (3.7)
T.=0
where T, , T,,, T,, are the x, y, z components of the stresses applied to the body on
surface B; . Finally, on the two parallel bounding planes,
. =0 (3.8)

i.e., no tractions are applied to these surfaces; hence, t,., 7,,, 0, must be zero on
these surfaces.
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It is clear from Egs. (3.5) that o,, will be equal to zero, as demanded by
Eq. (3.8), only when the dilatation J; is equal to zero. In most problems J, will
not be equal to zero; therefore, the solution will not be exact since the boundary
conditions on the parallel planes are violated. In many problems this violation of
the boundary conditions can be cleared by superimposing an equal and opposite
distribution of ¢, (residual solution) onto the original solution.

It is possible to obtain an exact solution to the residual problem only when o,
is a linear function of x and y. When ¢_, is nonlinear, an approximate solution
based on Saint-Venant’s principlet is often utilized. When the nonlinear distribu-
tion of ¢, on the parallel boundaries is replaced by a linear distribution which is
statically equivalent, the solution will be valid only in regions well removed from
the parallel bounding planes. Thus, it is clear that the plane-strain approach is
necessarily limited to the central regions of bodies such as shafts or dams which
are very long, i.e., thick, relative to their lateral dimensions. In the central region of
such a long body, the stresses o, , 0,,, and 7., can be found from the solution of
the original problem since the superposition of the residual solution onto the
original problem does not influence these stresses but only serves to make o,,
vanish.

In this section the plane-strain approach has been discussed without indicat-
ing a method for solving for o, o, ,and t_, . This problem will be treated later in
this chapter when the Airy’s-stress-function approach is discussed. In this plane-
strain section it is important for the student to understand the plane-strain
assumption, why it usually leads to a violation of the boundary conditions on the
two parallel planes, and finally how these undesired stresses can be removed from
the planes by superimposing a statically equivalent linear stress system. Also quite
important is Saint-Venant’s principle, since an experimentalist in simulating loads
often relies on this principle to permit simplification in the design of the loading
fixtures. :

3.5 PLANE STRESS

In the preceding section it was noted that the plane-strain method is limited to
very long or thick bodies. In those cases where the body thickness is small relative
to its lateral dimensions, it is advantageous to assume that

Op =Ty, =T, =0 (3.9)
throughout the thickness of the plate. With this assumption the stress equations of
equilibrium again reduce to

00, v Jt da,, ;

s =0 24+ 24 F =0 3.10
(3x+(7y+Fx 5x+(3y+y )

T Saint-Venant’s principle states that a system of forces acting over a small region of the boundary
can be replaced by a statically equivalent system of forces without introducing appreciable changes in
the distribution of stresses in regions well removed from the area of load application.
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and the stress-strain relations [Egs. (2.13)] become

O, = AJy + 2ue,, 0,y = Ay + 2ue,, Gpp = Ay + 2ue,, =0

Ty = W | T = 0L s =0 (3.11)
From the third of Egs. (3.11) the following relationship can be obtained:

A

€= — RS (Estte,y) (a)

With this value of ¢,, the first strain invariant J; becomes

o
A+

S Jy (et ies) (b)

Substituting the value for J, given in Eq. (b) into Egs. (3.11) yields

2Au
Oxx = T 2“ (exx Pr 6yy) = 2.u'exx

24U
a.yy = m (éxx + eyy) + 2/l€yy (312)
Txy = uyxy GZZ = Tyz = sz = 0

Unfortunately, in the general case 0., , ,,, and 7, are not independent of z, and
thus the boundary conditions imposed on the boundary B, cannot be rigorously
satisfied. To overcome this difficulty, average stresses and displacements over the
thickness are commonly used. If the body is relatively thin, these averages closely
approximate the true boundary conditions on B; . Average values for the stresses
and displacements over the thickness of the body are obtained as follows:

&xx=ijtaxx dz 5yy=ijtayy dz %xy=ift Toy A2

5 Dedheg Tl
e it
u—z—tf udz v—2~tJ. vdz (3.13)

The symbol ~ over the stresses and displacements indicates average values.
Substituting the average values of the stresses into Egs. (1.2) gives the boundary
conditions which must be satisfied on B,:

T,x = G, c0s (1, x) + 7., cos (n, y)

T
T,y = %, cos (n, x) + &,, cos (n, y) (3.14)

If the equations which the plane-strain and the plane-stress solutions must satisfy
are compared, it can be observed that they are identical except for the comparison
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between Egs. (3.5) and (3.11). An examination of a typical equation from each of
these sets,

1 e + €,,) + 2ue,, plane strain

Oxx =1 2/1'[1
A+ 2u

(Eocst €0k 2ue.. plane stress

indicates that they are identical except for the coefficients of the €xy 1 €, TOTHL.
Since all other equations for the plane-stress and plane-strain solutions are identi-
cal, results from plane strain can be transformed into plane stress by letting

244

A—
A+ 2u

which is equivalent to letting

v

- (3.15)

1—v
In a similar manner a plane-stress solution can be transformed into a plane-strain

solution by letting

2Au

i o

v

or v— (3.16)

1—v
In the plane-stress approach it is generally assumed that
O, = Tyz = rzx = 0

and the unknown stresses o, , 7,,, and 7., Will have a z dependence. As a result of
this z dependence, the boundary conditions on B, are violated. This difficulty can
be eliminated and an approximate solution to the problem can be obtained by
using average values for the stresses and displacements. Finally, it was shown that
plane-stress and plane-strain solutions can be transformed from one case into the
other by a simple replacement involving Poisson’s ratio, as indicated in Egs. (3.15)
and (3.16).

3.6 AIRY’S STRESS FUNCTION

In the plane problem three unknowns o, 0,,, and 7,, must be determined which
will satisfy the required field equations and boundary conditions. The most con-
venient sets of field equations to use in this determination are the two equations of
equilibrium and one stress equation of compatibility.
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The equilibrium equations in two dimensions are

00 | Oy 5y = (3.17a)
0x dy
e, Goly

X __——-+—F'=0 3.17b
0x 4 dy ¥ ( )

The stress compatibility equation for the case of plane strain is

24 + u)(6F, OF
Viowm Fopf=— iﬁ?( * 4+ ~y) (3.17¢)

053 Jdy

Suppose the body-force field is defined by Q(x, y) so that the body-force intensities
are given by
Q
0 e 0Q

(3.18)

Fx—'———a’x y aly

Then by substituting Egs. (3.18) into Egs. (3.17) and noting that
204 + /(A +2u) = 1/(1 — v), it is apparent that

80, Trp 00 GG, O

XV o

ax | oy 0% B oy Oy

Q
Vz(axx +0,,— ) —0

(3.19)

1—v

Equations (3.19) represent the three field equations which o, 7y, and 7, must
satisfy.
Assume that the stresses can be represented by a stress function ¢ such that

0? O
axx=55)£+g a =5;2'+Q Txy=—ax(§y (320)

If Egs. (3.20) are substituted into Eqgs. (3.19), it can be seen that the two equations
of equilibrium are exactly satisfied, and the last of Egs. (3.19) gives

1—2v
1—=v

Vép = —

v2Q (3.21)

Thus, equilibrium and compatibility are immediately satisfied if ¢ satisfies
Eq. (3.21). The expression ¢ s known as Airy’s stress function. If Eq. (3.21)1s
solved for ¢, an expression containing x, y, and a number of constants will be
obtained. The constants are evaluated from the boundary conditions given in
Egs. (3.17), and the stresses are computed from ¢ according to Egs. (3.20). Of
course, evaluation of ¢ from Eq. (3.21) produces stresses for the plane-strain case.
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Stresses for the plane-stress case can be obtained by letting v/(1 — v)— v, as
indicated in Eq. (3.15). This substitution leads to
Vg = —(1 —v) V29 (3.22)

which is valid for plane-stress problems.
It is important to note that if the body-force intensities are zero or constant,
such as those encountered. in a gravitational field, then

ViQ=0
and Egs. (3.21) and (3.22) both become
Vi =0 (323q)
This is a biharmonic equation, which can also be written in the form
0* a% o
~¢+2 ¢ +—¢:0 (3.23b)

B oy Oyt

Examination of this equation shows that ¢ and thus ¢, 0,,,and 7, are indepen-
dent of the elastic constants. This consideration is very important in two-
dimensional photoelasticity since it indicates that the stresses obtained from a
plastic model are identical to those in a metal prototype if the model is simply
connected and subjected to a zero or a uniform body-force field. Differences in the
values of the modulus of elasticity and Poisson’s ratio between model and pro-
totype do not influence the results for the stresses. There are exceptions to the
simply connected restriction, however, which will be covered in a later chapter on
photoelasticity.

3.7 AIRY’S STRESS FUNCTION IN CARTESIAN COORDINATES

Any Airy’s stress function used in the solution of a plane problem must satisfy
Egs. (3.23a) and (3.23b) and provide stresses via Egs. (3.20) which satisfy the
defined boundary conditions. Some Airy’s stress funetions commonly used are
polynomials in x and y. In this section, polynomials from the first to the fifth
degree will be considered.

A. Airy’s Stress Function in Terms of a First-Degree Polynomial

$1=a;x+byy
It is clear from Egs. (3.20) that

ax =0y =Ty, =0 (3.24)

and that Egs. (3.23a) and (3.23b) are satisfied. This function is suitable only for
indicating a stress-free field and therefore is of little use in the solution of any
problem.

Oy =0
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B. Airy’s Stress Function in Terms of a Second-Degree Polynomial

by =a;x* + byxy + ¢y
From Egs. (3.20) the stresses are
o= o, ="2d; b (3.25)

Note that Egs. (3.23a) and (3.23b) are satisfied and that the stress function ¢,
gives a uniform stress field over the entire body which is independent of x and y.

C. Airy’s Stress Function in Terms of a Third-Degree Polynomial

¢3 = a3x3 + b3X2y S C3xy2 = d3y3
Again, by use of Egs. (3.20) the stresses are given by
O =203x + 6d3y o,, = 6a3x + 2bsy T,y = —2b3x — 2¢c3y (3.26)

- Equations (3.23a) and (3.23b) are satisfied unconditionally, and the stress function
¢ provides a linearly varying stress field over the body.

D. Airy’s Stress Function in Terms of a Fourth-Degree Polynomial

Ps = ayx* + by x3y + c x?y? +dyxy® + e y*
From Egs. (3.20) it is apparent that
0o = 204%% + 6d,xy + 1264 y?
0,y = 12a,x* + 6byxy + 2c, y? (3.27)
Ty = —3byx? — e xy — 3dyy?

When ¢, is substituted into Eq. (3.23b), it should be noted that it is not uncondi-
tionally satisfied. In order for V4¢ = 0 it is necessary that

Bt ‘e
€] — (a4+3)

Substituting this equation into the relations for the stresses gives
Opx = 204 %% + 6dyxy — 12a,y% — 4c, 2

and o, and 1, are unchanged. Thus, ¢, yields a stress ficld which is a second-
degree polynomial in x and y.

E. Airy’s Stress Function in Terms of a Fifth-Degree Polynomial

= asx® + bsx®y + csx3y% + dsx?y® + esxy* + fsy°
5 XY
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Employing Egs. (3.20) to solve for the stresses gives

O = 205X + 6ds x%y + 12exy% + 20f. y°
o,y = 20as x> + 12b5x%y + 6¢5xy? + 2ds y°
T, = —4bsx® — 6csx2y — 6dsxy* — desy®

Again, note that ¢s must be subjected to certain conditions involving the con-
stants e and f5. For Egs. (3.23a) and (3.23b) to be satisfied, these conditions are

es= —(5as +cs)  fs= —4(bs +ds)

Subject to the restrictive conditions listed above, the cartesian stress compon-
ents become

Oyx = 205X> + 6dsx?y — 12(5as + ¢s)xy? — 4(bs + ds)y°
0,, = 20asx* + 12bsx2y + 6c5xy? + 2ds y° (3.28)
T,, = —4bsx® — 6csx?y — 6dsxy® + 4(5as + ¢5)y?

Thus, it is clear that ¢ yields a stress field which is a third-degree polynomial in x
and y. It is possible to continue this procedure to ¢¢, ¢, etc., as long as
Egs. (3.23a) and (3.23b) are satisfied. It is also possible to add together two or
more stress functions to form another, for example, ¢* = ¢, + ¢5. Thus, by
simply adding terms or by eliminating terms from the stress function it is theor-
etically possible to build up any stress field that can be expressed as a function of x
and y.

3.8 EXAMPLE PROBLEM

Airy’s stress function expressed in cartesian coordinates ¢an be employed to solve
a particular class of two-dimensional problems where the boundaries of the body
can be adequately represented by the cartesian reference frame. As an example,
consider the simply supported beam with uniform loads shown in Fig. 3.2. An
examination of the loading conditions indicates that

Ty =0 aty=:2—
ayy:{ ¥
—q atJ’=7 (a)

s aty="" ®)




64 ELEMENTARY ELASTICITY
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Figure 3.2 Simply supported beam of length L, height h, and unit depth subjected to a uniformly
distributed load.

&

Also at x = +L/2

j Txy dy=R="- (C)
)
h/2
| oudy=0 (d)
—h2
h/2
j 6.,.ydy=0 (e)
—h/2

Note that the bending moment (and consequently ¢,) is a maximum at position
x = 0 and decreases with a change in x in either the positive or the negative
direction. This is possible only if the stress function contains even functions of x.
Note also that g, varies from zero at y = —h/2 to a maximum value of —gq at
y = +h/2; thus the stress function must contain odd functions of y. From the
stress functions listed in Sec. 3.7, the following even and odd functions can be
selected to form a new stress function ¢ which satisfies the previously listed
conditions.

@ =ayx? +byxty +diy® + agx* + bsx*y + dsx*y® + f5)° (f)
This stress function ¢ must satisfy the equation V*¢ = 0; hence

a,=0  fs=—%(bs + ds) (9)
~ From Egs. (3.20) the cartesian stress components are

Orx = 6d3y + 6ds x>y — 4(bs + ds)y>

O-yy = 2(12 + 2b3y + 12b5X2y + 2d5y3 (h)
T,y = —2byx — 4bs x> — 6d5xy?
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Examination of the boundary conditions shown in Eq. (a) indicates that ¢, must
be independent of x; hence the coefficient b5 = 0. Consequently, Eqgs. (k) reduce to

Oyx = 6d3y + 6dsx?y — 4dsy3
oy = 205 + 2byy + 2ds 3 (i)
Ty = —2b3x — 6d5xy?

The problem can be solved if the coefficients a,, b5, d5, and d5 can be selected so .
that the boundary conditions given in Egs. (a) to (e) are satisfied. From Egs. (a)

h h\? bk - ds b
yy:0—2(12+2b3(—§) +2d5(_§) a2_¥_%~0 (j)
and from Egs. (b)

h h\3 bsh dsh?
ayy=—q=2a2+2b32+2d5(§) a2+7+ 58 =—% (k)
Adding Egs. () and (k) gives
el
a = 4 ()
From Egs. (a) and (b)
h\2 e
‘ny=0=—2x b3+3d5 ii b3=—2hd5 (m)
Substituting Egs. (m) into Egs. (j),
el - 3hPd, q q
e 1 @ )
and by = o (0)
a LRERET

With the values of a,, b;, and ds given by Egs. (I), (0), and (n), respectively,
Egs. (c) and (d) are identically satisfied. Equation (e) can be used to solve for the
remaining unknown ds .

h/2
(6d3y B0 2——4qy)dy=0

& 20
L2 3 4 Saltn/2
Solving Eq. (p) for d; gives
q
ds = (2n* - 5I2) (@)
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where I = h°/12 is the moment of inertia of the unit-width beam. Substituting
Egs. (g), (0), (n), and (I) into Egs. (i) gives the final equations for the cartesian
components of stress: :

=_q_ 2. 12 i 2 — 2043
O = g7 (4 L)y+601(3hy y?)
O = 547 (4° = 302y = 1) ")
gx
Txyzg(hz_zlyz)

The conventional strength-of-materials solution for this problem, namely,
that g, = My/I,.gives

_ s e
Oxx = 81 (4X L )y (S)

Which is identical with the first term of the relation given for o, in Egs. (r). The

second term, (¢/601)(3h%y — 20)°), is a correction term for the strength-of-mate-
rials solution. In the strength-of-materials approach, recall that it is assumed that
plane sections remain plane after bending. This is not exactly true, and as a
consequence the solution obtained lacks the correction term shown above. It is
clear that the correction term is small when L > h, and the strength-of-materials
solution will be sufficiently accurate.

This simple example illustrates how elementary elasticity theory can be
employed to extend the student’s understanding of the distribution of stresses in
simple two-dimensional problems. Other examples are included in the exercises at
the end of this chapter.

3.9 TWO-DIMENSIONAL PROBLEMS IN POLAR
COORDINATES

In Sec. 3.6 the Airy’s-stress-function approach to the solution of two-dimensional
elasticity problems in cartesian coordinates was developed. This method was then
applied to solve an elementary problem which was well suited to the cartesian
reference frame. In many problems, however, the geometry of the body does not
lend itself to the use of a cartesian coordinate system, and it is more expeditious to
work with a different system. A large class of problems (such as circular rings,
curved beams, and half-planes) can be solyed by employing a commonly used
system, the polar coordinate system. In any elasticity problem the proper choice of
the coordinate system is extremely important since this choice establishes the
complexity of the mathematical expressions employed to satisfy the field equa-
tions and the boundary conditions.
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In order to solve two-dimensional elasticity problems by employing a polar-
coordinate reference frame, the equations of equilibrium, the definition of Airy’s
stress function, and one of the stress equations of compatibility must be reestab-
lished in terms of polar coordinates. On the following pages the equations of
equilibrium will be derived by considering a polar element instead of a cartesian
element. The equations for the polar components of stress in terms of Airy’s stress
function as well as the stress equation of compatibility will be transformed from
cartesian to polar coordinates. Finally, a set of stress functions is developed which
satisfies the stress equation of compatibility. .

The stress equations of equilibrium in polar coordinates can be derived from
the free-body diagram of the polar element shown in Fig. 3.3. The element is
assumed to be very small. The average values of the normal and shearing stresses
which act on surface 1 are denoted by o,, and t,,, respectively. Since the stresses
may vary as a function of r, values of the normal and shearing stresses on surface 3
are given by ¢,, + (d0,,/0r) dr and 1,y + (01,4 /0r) dr. Similarly, the average values
of the normal and shearing stresses which act on surface 2 are given by g4 and 7,4
Since the stresses may also vary as a function of 6, values of the normal and
shearing stresses on surface 4 are gy + (0049 /00) dO and 7, + (91,4/06) d6.

For a polar element of unit thickness to be in a state of equilibrium the sum of
all forces in the radial r and tangential 0 directions must equal zero. Summing
forces first in the radial direction and considering the body-force intensity F, gives
the equation of equilibrium

(0'" . da,, dr) (r+dr)dd — a,r db — [O'oe dr + (099 L %dg) dr}@

or 00 2
07,9
+ r,o-i—%d@—‘c,g dr + F,r d0 dr =0 (a)
y
9 007 o
%+ 5900 Tt 5 9T
0Trg
ot SP2a6,04 ANt o O
2
e iay
o Tro "\ Ts
{
a8
4

Figure 3.3 Polar element of unit depth
showing the stresses acting on the four
x faces.
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Dividing Eq. (a) by dr df and simplifying gives

0o 00, db 0o Gl &

s L O L e R L b

2 dr 0 2+U"+0rr 099+59+ L (b)
If the element is made infinitely small by permitting dr and d6 each to approach
zero, the first two terms in Eq. (b) also approach zero and the expression can be
rewritten as

56" lafrv +1
or ARG

(Grr T 000) + F,. = 0 (3.29(1)

The equation of equilibrium in the tangential direction can be derived in the same
manner if the forces acting in the 6 direction on the polar element are summed and
set equal to zero. Hence

1003y Ory 20k .
R et = () (3.29p)

Equations (3.294) and (3.29b) represent the equations of equilibrium in polar
coordinates. They are analogous to the equations of equilibrium in cartesian
coordinates presented in Egs. (3.17a) and (3.17b). Any solution to an elasticity
problem must satisfy these field equations.

3.10 TRANSFORMATION OF THE EQUATION V*¢ = 0 INTO
POLAR COORDINATES

In the coverage of Airy’s stress function given in Sec. 3.6 it was shown that the
stress function ¢ had to satisfy the biharmonic equation V*¢ = 0, provided the
body forces are zero or constants. In polar coordinates the stress function must
satisfy this same equation; however, the definition of the V* operator must be
modified to suit the polar-coordinate system. This modification may be accom-
plished by transforming the V* operator from the cartesian system to the polar
system.

In transforming from cartesian coordinates to polar coordinates, recall that

e arctan% (3.30)

where r and 6 are defined in F 1313

Differentiating Egs. (3.30) gives

L T oty

—_— = — = et — 0

iy cos 0 T sin

00 y sin 6 008 % icos 0

T i A 0 e
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The form of the V* operator in cartesian coordinates is

RE 02 0%
4
s ( +5y)(5x 107 )

Individual elements of this expression can be transformed by employing
Egs. (3.30) and (3.31) as follows. If it is assumed that ¢ is a function of r and 6,

3 _o¢ or  o¢ o8

ox ~ ordx | d60x @

o 6q§ &*r -« {0r 20%¢ d*p or 90 0¢ 0%0  [(06\%0%¢

I orax (ax) B T aro0oxox T 002 (&) e Y
Substituting the equalities given in Egs. (3.31) into Eq. (b) yields

0’ _sin® 00 52¢ sin 20 9%

Pl
sin 209¢  sin? 00%¢
2 00 2 06% 3224)
Following the samebprocedure makes it clear that
¢ _cos? 03¢ ., 3%  sin20 &%
e or? r ord
_ sin 2609¢ | cos® 60%¢
Ll e
0*¢ _ sin 0 cos 03¢ 62¢ cos 20 62%¢
8x8y r 5r+ 1n0c059 r 0rof
_©0s 200¢  sin 0 cos 09%¢
200 r? 06? 3429
Adding Egs. (3.32a) and (3.32b) gives <
2¢ ¢ 26 136 1%
i B 5T T o e
Furthermore, it is easily seen that
9r 82\ (3% %
Rl e
18 13\(3% 13 1%
g (aﬂmﬁ 2592)( Tor +rzw) i A

Equation (3.34) is the stress equation of compatibility in terms of Airy’s stress
function referred to a polar coordinate system.
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3.11 POLAR COMPONENTS OF STRESS IN TERMS OF
AIRY’S STRESS FUNCTION

By referring to the two-dimensional equations of stress transformation
[Egs. (1.11)], expressions can be obtained which relate the polar stress components
0., Ogg, and 7,4 to the cartesian stress components o,,, d,,, and 1., as follows:

Gy = Oyy €O8% 0 + g, sin® 6 + 7, sin 20
Ogg = 0y, COS™ 0+ gy SIED= 5 sin 20 (3.35)

Ty = (6,, — 0,-) i G ees i} = cos 20

=
If Eqgs. (3.20) are substituted into Egs. (3.35) and Q set equal to zero (which is
equivalent to setting both F, and F, equal to zero), then

R R ¢ .
e b = 20
0, 2y cos® 0 + 32 sin” 0 ) sin
P g 0 .
=k = 0 20 3.36
Top = 5 COS 0+ 5y sin® 6 + o~ 5 sin (3.36)
¢ %P\ . o%¢
Togi= (W = 6y2) sin 6 cos 6 — 2% oy cos 20

If the results from Egs. (3.32a) to (3.32¢) are substituted into Eqs. (3.36), the polar
components of stress in terms of Airy’s stress function are obtained:

i log o gt %)
O =3 or T 12002 i 6r‘2
106 15

=359 " ror o8 Gl

When Airy’s stress function ¢ in polar coordinates has been established, these
relations can be employed to determine the stress field as a function of r and 6.

3.12 FORMS OF AIRY’S STRESS FUNCTION IN
POLAR COORDINATES

The equation V*¢ = 0 is a fourth-order biharmonic partial differential equation
which can be reduced to an ordinary fourth-order differential equation by using a

separation-of-variables technique, where

¢ = R (r) cos nf

sin nf

The resulting differential equation is an Euler type which yields four different
stress functions upon solution. These stress functions are tabulated, together with
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the stress and displacement distributions which they provide, on the following
pages.
One of the stress functions obtained can be expressed in the following form:

dO(r)=ag+ by Inr+cor’ +dyr*Inr (3.38a)

By using Eqs. (3.37), the stresses associated with this particular stress function
can be expressed as

b
a,,:r—;’+2co+do(1 +2Inr)
b
Opo = — ;g +2co+do(3+2Inr) 1,=0 (3.38b)

The displacements associated with this function can be determined by inte-
grating the stress displacement relations, giving

ur=% —(1+ v)ér9+2(1 —v)cor +2(1 = v)dor In r — (1 + v)dor

+ o, cos 0 + o, sin 0

Uy = % (4dgr0) — g7 — ay sin 6 + a3 cos 0 (3.38¢)

where u, and u, are the displacements in the radial and circumferential directions,
respectively. The terms containing a;, «,, and a5 are associated with rigid-body
displacements.

It should be noted that the stresses in this solution are independent of 6;
hence, the stress function ¢© should be employed to solve problems which have
rotational symmetry.

One of the other stress functions and the stresses and displacements asso-
ciated with it can be expressed as follows:

e sin 6
¢ (a1r+ +cyr +d1rlnr) S
( dl) sin 0

= r+
r )lcos 6
2b, sin 0
=" 4+6
( 3 ) cos 0
i ( 2b1 L dl) —c.os 0
r sin 0
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1 b
u,=E”(1 +v)r—;+(1—3v)c1r2— (1+v)d, (3.39)
Ll L e e iR 0 + o sin 0
y cos 0 16) W
ol b, 3 cos 0
ug—EH (1+v)r7—(5+v)c1r +(1—=v)d; In rJ £
sin @ ;
+ (24, 6) cos O ~ T — %2 sin 0 + o5 cos 6

The third stress function of interest and its associated stresses and displace-
ments are as follows:

~

i sin nd
d)(n) == (anrn + b,,r_" S cnr2+n 0C dnrz—n)

cos nd
Op = [ay(n — P2 "2 —b(n + n®)r~ " 2+ ¢,2 + n—n?p"
sin nB}

+d,2—n—n*r" -

099 = [a,(n* — n)r""2 + b,(n*> + n)r™""2 + ¢,(2 + 3n + n?)"
sin nf

+d,2—-3n+n*p" -

Tog = [@(n® — n)r" "2 = b,(n + n*)r™ "% + ¢ (n + n*)"

—cos nH}

+d,(n— n?)r~7] S

(3.40)

1
U — E{_a"(l + v~ + b, (1 + v)r !

+c[4—(1+v)2+n)mt?

sin nf

A = (14 2= nleto

+ a, cos 0 + o sin 0

1
lii= E{_a"(l + V)"~ — b (1 4 v)pr~ 71

cos nb

—c[4+ (L + vt +d[4— (1 + vt} e

— oy —a, sin 0 4+ a5 cos 0
1 2 3

For the stress function ¢ the value of n can be greater than or equal to 2 (that is,
n>=2).
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The fourth stress function of interest and the associated stresses and displace-
ments are expressed as follows:
¢® =a,0+b,r*0 + c,r0 sin 6 + d,rf cos 6

. :
O = 26,8+ 2¢, - — 24,2 ¢

r

GBG — 2b*0
Te =t —b, (3:41)

1
u, = E[Z(l —v)b,r0 + (1 — v)c, 0 sin 0 + 2¢, Inrcos 0

+ (1 —v)d,6 cos @ — 2d, In rsin 6] + a, cos 6 + a; sin 0

1
— =1 +v)ar—*+(3—v)b*r—4b*rln r

UQ=E

— (1 +v)e, sin 8 — 2¢, In rsin 6 + (1 — v)c, 0 cos 6
—(1+v)d, cos 0 —2d, Inrcos 6 — (1 —v)d,0sin 0
—oayr —a, sin 6 + a; cos 0

In the example problems which follow, the stress functions previously listed
will be employed to determine the stresses and displacements for problems which
lend themselves to polar coordinates. As the selection of the stress function is often
the most difficult phase of the problem, particular emphasis will be placed on the
reasoning behind the selection.

3.13 STRESSES AND DISPLACEMENTS IN T
CIRCULAR CYLINDER SUBJECTED TO INTERNAL
AND EXTERNAL PRESSURE

Consider the long hollow cylinder shown in Fig. 3.4, which is subjected to an
internal pressure p; and an external pressure p, . The inside and outside radii of the
cylinder are denoted as a and b, respectively.

As stated previously, the first step in the solution of an elasticity problem after
the geometry of the body has been defined is to establish the boundary conditions.
For the problem under consideration these conditions can be listed as follows:

O = —D; T9=0 atr=a

O, = —D, T,6=0 atr=>~ (a)
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I
P(r8)
a Z
4 8
X
Vs
Figure 3.4 Circular cylinder subjected to internal
5 D and external pressures.

An examination of the boundary conditions indicates that they are independent of
0; hence the four stress functions 3%, ¢, 6™ and ¢ should be inspected to
determine which will provide a stress field independent of . The stress function
Il #'? given in Eq. (3.384) yields stresses which satisfy this requirement, as shown

below:
bo
U,,=r—2+2c0+d0(1 +2Inr)
by
090=—75+2co+d0(3+21n r) (b)
Tr() 5= 0

Equations (b) will provide the desired solution to the problem if the constants by,
Co, and d, can be determined so that the boundary conditions given in Egs. (a)are
satisfied.

An examination of Egs. (b) indicates that the condition 7. = 0 throughout
the body satisfies part of the boundary conditions. From symmetry considerations
1t is also obvious that both u, and uy must be independent of 0. This condition can
be satisfied only ifd, =0 in Egs. (3.38c¢). The two remaining constants b, and o
can be evaluated by using the remaining boundary conditions in Egs. (a):

b b
Urr=_pi=ﬁ+2co alrr=_-p":b‘g_f-zc0 (C)

Solving Egs. (c) for by and ¢, yields

b, = 402, — p;) )
s R ey
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These values when substituted into Egs. (3.38) provide the required solution.

_a’b*(p,— p) , a’p,— bp,

i (b — a?)r? bt —a*
5 R DD,
(b% — a®)r? b? —a?
7,9 =0 (3.42)
1 a’*b*(p, — p:) g =bp,

=t —(1+v)——(b2_a2)r +(1—v)——b2_a2 r

ug =0

Equations (3.42) give the stresses and displacements at a point P(r, §) in the
cylinder if the two pressures, the radii, and the elastic constants are known. Three
special cases of this problem are of interest.

Case 1: External pressure equals zero Setting p, = 0 in Egs. (3.42) leads to

azpib b? a’p; b?
Grr=b2‘a2(1~7) 609=W(1+2) Tr6=0

r a r
2
a-p;

4= prr gl + P+ (=] =0 (6.43)

This special case is often encountered when dealing with stresses in piping systems
or pressure vessels.

Case 2: Internal pressure equals zero Setting p; = 0 in Egs. (3.42) leads to

bzpa a bzpo a2
Grr=b7‘_’az(rz o 1) Top = _W(Tz"’ 1) T =0

b2p0 2. 2 .
U, = —W_Tz)[(l +v)a*+(1—v)p?]  u=0 (3:44)

When external pressure is applied to a cylindrical shell, the problem of buck-
ling should also be considered.

Case 3: External pressure on a solid circular cylinder When one sets g = 0 in
Egs. (3.44), the hole in the cylinder vanishes and the stresses become '

Op = Ogg = — Do Trg = 0

U= L ;vp,,r =10 (3.45)
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3.14 STRESS DISTRIBUTION IN A THIN, INFINITE PLATE
WITH A CIRCULAR HOLE SUBJECTED TO
UNIAXIAL TENSILE LOADS

A thin plate of infinite length and width with a circular hole is shown in Fig. 3.5.
The plate is subjected to a uniform tensile-type load which produces a uniform
stress ¢, in the y direction at r = oo. The distribution of the stresses about the
hole, along the x axis, and along the y axis can be determined by using the
Airy’s-stress-function approach.

The boundary conditions which must be satisfied are

T =10 atr=a (a)
& O =0y atr— oo
0 =Ty=0 atr—ow (b)

Selection of a stress function for this particular problem is difficult since none
of the four functions previously tabulated is satisfactory. In order to overcome this
difficulty, a method of superposition is commonly used which employs two differ-
ent stress functions. The first function is selected such that the stresses associated
with it satisfy the boundary conditions at r — oo but in general violate the condi-
tions on the boundary of the hole. The second stress function must have asso-
ciated stresses which cancel the stresses on the boundary of the hole without
influencing the stresses at r — co. An illustration of this superposition process is
presented in Fig. 3.6.

The boundary conditions at r — co can be satisfied by the uniform stress field
associated with the stress function ¢, in Egs. (3.25). For the case of uniaxial

el | el l It Figure 3.5 Thin, infinite plate with a circular hole
% subjected to a uniaxial tensile stress g, .
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R iR B } l Figure 3.6 The  method ~of
%0 0o superposition.

tension in the y direction, ¢, reduces to

Gpos

¢y =a,x* = 5 ()

The stresses throughout the plate for a plate without a hole are
g, =0, g, =0.,—0 (d)
If an imaginary hole of radius a is cut into the plate, the stresses g,,, 749, and 7,4 0

the boundary of the imaginary hole can be computed from Egs. (3.31) as follows:

ol = 0o sin® 6 = %(1 — cos 20)
I 2 %o i
Ogg = Go Cos? 0 = 5 (1 + cos 26) (e)

. go
= o, smecosﬂzjosm 20

In the original problem the boundary conditions at r = g were
Op = Tpg = 0

The boundary conditions to be satisfied by the stresses associated with the
second stress function are therefore

0o

2

G,= —0a, sin? 0= (1-cos28) atr=g
Ty = Tr0:(799=0 atr— oo (f)

: ooy .
T, = — 0, sin 6 cos 0 = —7051n26 atr=a
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From Egs. (f) it is apparent that the stresses o}, and 1,4 are functions of sin 26
and cos 26, which suggests ¢@ given by Egs. (3.40) as a possible stress function.
Inspection of Egs. (3.40) indicates, however, that this function can satisfy the
boundary conditions only for 7,9. From Egs. (3.38), however, it can be seen that
the stresses associated with ¢® can satisfy the boundary conditions for g,, with-
out influencing 7,,. Thus, the stress function ¢© + ¢® may be applicable. From
Egs. (3.38) and (3.40),

PO+ ¢P =g, + by Inr+cor’ +dyr’lnr

+ (ay7% + byr ™% + ¢y7* + d,) cos 20 (9)

b
o-,,=73+2c0+d0(1+21nr)

&

6b, 4
= (2a2 =2 %2—) cos 26 (h)

b
090=—;2~+2co+d0(3+21nr)

6b
£k (2612 + r—f + 1002r2) cos 20 ()
6b 2d
o — (2(12 - r‘f + 6c,1? — r—zz) sin 20 ()

Equations (h) to (j) contain seven unknowns: by, ¢q, dg,a;, b, , c,,and d, . Since
Ogg =0, =Tno=0asr— o0,

C0=d0=a2=02=0k (k)
and Egs. (h) to () reduce to
o riz [bo - (671)22 + 4d2) cos 20} (0
1 6b
099=—2(—b0 +—2 cos 26) (m)
r r
1 |(6b
To=—3 [(r—zz + 2d2) sin 26} (n)
From the boundary conditions at r = q,
1 [(6b : 0o .
= —?[(?Zﬁ-zdz) sin 26}= — > sin 26 (0)
Oi= 512- [bo — (6—1)22 + 4d2) cos ZOJ = %(l — cos 26) (p)
a
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Solving Egs. (0) and (p) for the coefficients gives

1 s agyat Gya*
bo = — P 2= i dy = — 2 (‘1)

Substituting Egs. (g) into Egs. (I) to (n) gives
2 "
opa 3a

2 2
. Joa ( 3a

I

Gog— g 1+ 7 cos 29)
2 2
11 RSt Opa 3a &b .
Togi— 57 [(—rz 2) sin 20]

The required solution for the original problem is obtained by superposition as

follows:
e 3q?
7] 12 i
( r2) [1 + ( ) 1) cos 29”
)

I 1 a’ 3a*
009=009+600=7 il +r7 + |1 +rT Cos 20 (346)

o 3a? ah |
1,9=rlg+r£§,=—29l(l +7)(1 —r—z)sm 20}

Equations (3.46) give the polar components of stress at any point in the body
defined by r, 6. Through the use of Eqgs. (3.46) the stresses along the x axis, along
the y axis, and about the boundary of the hole can easily be computed.

The stresses along the x axis can be obtained by setting @ =0 and r = x in

Egs. (3.46): b
o a*\ 3a?
O-rr i Gxx = ?O(l —)7) x2
g a*’ 1 3g*
T =0,, = —29(2 et 74) (3.47)

The distribution of G,y /Ooand 0,/ is plotted as a function of position along
the x axis in Fig. 3.7. An examination of this figure clearly indicates that the
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- Figure 3.7 Distribution of ¢,,/d, and ,,/0, along the x axis.
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In a similar manner the stresses along the y axis can be obtained by setting
6 = 7/2 and r = y in Egs. (3.46):

52 4
O = 0, =O-0(2—a+3£)

yy 5 y2 y4
Gola : 3a :
Ogg = Oxx = ?O(F = y“‘) (3.48)
Trﬂ = Txy = 0

A distribution of ¢, /o and 0, /0, is plotted as a function of position along
the y axis m Fig. 3.8. In this figure it can be noted that o,, /0, = —1 at the
boundary of the hole; thus the influence of the hole not only produces a concen-
tration of the stresses but in this case also produces a change in the sign of the
stresses.

The distribution of o4, about the boundary of the hole is obtained by setting
r = a into Egs. (3.46):

Gy, =T 5=10 69 = 0o(1 + 2 cos 20) (3.49)
The distribution of g4, /o, about the boundary of the hole is shown in Fig. 3.9. The
maximum o4, /0, occurs at the x axis (49 /0o = 3), and the minimum occurs at the
y axis (049 /0o = — 1). At the point defined by 8 = 60° on the boundary of the hole,
all stresses are zero. This type of point is commonly referred to as a singular point.

1 Lt
3
@ 0 //Q)
90 Q -
=
a
14
| L I
= 0 1 2 3
949
%

Figure 3.9 Distribution of ¢,./0, about the boundary of the hole.



