
Differential Equations Summary

1. Basic Differential Equations

1.1 First order equations

1.1.1 Basic form

Equations containing derivatives are differential equations. Differential equations of the first order
(meaning only first derivatives can occur, but no second or higher derivatives) can be written as

dy

dt
= y′ = f(t, y). (1.1.1)

Note that to keep equations short, we write dy
dt = y′. A function y = φ(t) is called a solution if it

satisfies the above equation. No simple solution method exists that can solve all differential equations of
this form.

1.1.2 Linear equations

However, for some forms there are methods to find solutions. For example, if the equation is linear in
y, it can be written as

y′ + p(t)y = g(t). (1.1.2)

Note that sometimes differential equations have to be rewritten to bring them to the right form. To find
a solution on a particular interval (α, β), p(t) must be continuous on (α, β), that is, p(t) exists for every
t in the interval (α, β).

The technique of integrating factor can be applied to solve this form of differential equation. First
find any integral of p(t). Then define the integrating factor µ(t) as

µ(t) = e
∫

p(t) dt. (1.1.3)

Now multiply equation 1.1.2 by µ(t). Using the chain rule, it can be rewritten as

d(µ(t)y)
dt

=
∫
µ(t) g(t) dt. (1.1.4)

The solution then becomes

y(t) =
1
µ(t)

∫ t

t0

µ(s) g(s) ds+
c

µ(t)
. (1.1.5)

Of this equation, the part 1
µ(t)

∫ t

t0
µ(s) g(s) ds is called the particular solution and c

µ(t) is called the
general solution. In differential equations the complete set of solutions is usually formed by the general
solution, plus any linear combination of the particular solution(s).

1.1.3 Separable differential equations

A differential equation is called a separable differential equation, if it can be written as

dy

dx
=
M(x)
N(y)

. (1.1.6)
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We can rewrite it as
N(y) dy = M(x) dx. (1.1.7)

The solution of this differential equation is acquired by simple integration of the equation∫
N(y) dy =

∫
M(x) dx. (1.1.8)

1.2 Second order linear differential equations

1.2.1 Basic form

The basic form of a second order differential equations is

d2y

dt2
= y′′ = f(t, y, y′). (1.2.1)

Such equations are hard to solve. So we will be looking at second order linear differential equations,
which have the form

y′′ + p(t)y′ + q(t)y = g(t). (1.2.2)

If a second order equation can be written in the form of the above equation, it is called linear, and
otherwise nonlinear. For such differential equations solving methods exist. However, we do assume that
the function p(t), q(t) and g(t) are continuous functions.

A second order linear differential equation is said to be homogeneous if the term g(t) in equation 1.2.2
is 0 for all t. Otherwise it is called nonhomogeneous.

1.2.2 Homogeneous equations with constant coefficients

Suppose our differential equation has the form

ay′′ + by′ + cy = 0, (1.2.3)

with a, b and c constants. Let’s define the characteristic equation to be

ar2 + br + c = 0. (1.2.4)

If we can find an r that satisfies the characteristic equation, then we know that y = ert is a solution. In
fact all linear combinations y = cert are solutions. So let’s look at three specific cases.

• b2 − 4ac > 0

There are two real solutions r1 and r2 to equation 1.2.4. Both y1 = er1t and y2 = er2t and all linear
combinations of them are solutions. So the general solution of the differential equation is:

y = c1y1 + c2y2 = c1e
r1t + c2e

r2t (1.2.5)

• b2 − 4ac = 0

There is only one solution r = − b
2a to the characteristic equation. We know that y1 = ert is a

solution. However, also y2 = tert is a solution. So the general solution of the differential equation
is:

y = c1y1 + c2y2 = c1e
rt + c2te

rt (1.2.6)
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• b2 − 4ac < 0

There are no real solutions now, only complex ones. So if α = − b
2a and β =

√
4ac−b2

2a , and also
r1 = α+ iβ and r2 = α− iβ, then y1 = er1t and y2 = er2t are solutions. Working out the complex
numbers in all linear combinations of the two solutions gives as general solution:

y = c1y1 + c2y2 = eαt (c1 cosβt+ c2 sinβt) (1.2.7)

The solutions given by the methods above are all possible solutions of the differential equation.

1.2.3 Nonhomogeneous equations - Method of undetermined coefficients

Suppose our differential equation has the form

ay′′ + by′ + cy = g(t). (1.2.8)

with a, b and c still constants. The function g(t) here is called the forcing function. Suppose we find any
particular solution Y (t) that satisfies the above equation. We already know from the previous paragraph
how to find the general solution set c1y1+c2y2 for the homogeneous differential equation ay′′+by′+c = 0.
If we add those two solutions up, we find all solutions for the above differential equation.

So the trick is to find a single Y (t) that satisfies the differential equation. One way to do that is to
use the method of undetermined coefficients. We make an initial assumption on the form of Y (t)
(called the auxiliary equation), with a couple of undetermined coefficients, and then try to find the
coefficients. The downside of this method is that it only works on equations that contain terms atn, eαt
and sinβt, or combinations of those terms.

First take a look at g(t). If it consists of multiple parts, separated by plus or minus signs (for example,
g(t) = t+sin t− et), then split the problem up in parts and find a particular solution Yi(t) for every part
gi(t).

To find a particular solution for gi(t), use the auxiliary equation

ts
((
a0 + a1t+ a2t

2 + . . .+ ant
n
)
eαt cosβt+

(
b0 + b1t+ b2t

2 + . . .+ bnt
n
)
eαt sinβt

)
. (1.2.9)

The variables α, β and n can be found in gi(t). (For example, for gi(t) = te2t the auxiliary equation
becomes ts

(
(a0 + a1t) e2t

)
.) The variable s, however, is a different story. It’s a matter of trial and error.

Usually s = 0 works. If this doesn’t work, try s = 1. If it still doesn’t work (unlikely, but possible), try
s = 2.

Now we have an auxiliary equation Yi(t) with undetermined coefficients a0, . . . , an, b0, . . . bn. First find
Y ′i (t) and Y ′′i (t). Then write down the equation

aY ′′i (t) + bY ′i (t) + cYi(t) = gi(t). (1.2.10)

Use this equation to solve the undetermined coefficients and find the particular solution for ay′′+by′+cy =
gi(t).

So having found all the particular solutions Yi(t) for ay′′ + by′ + cy = gi(t), add them all up to find the
particular solution Y (t) = Y1(t) + . . .+ Yn(t). Now add this up to the general solution c1y1 + c2y2 of the
homogeneous equation ay′′ + by′ + cy = 0 to find the full solution set of the differential equation:

y = c1y1 + c2y2 + (Y1(t) + . . .+ Yn(t)). (1.2.11)

1.2.4 Nonhomogeneous equations - Variation of parameters

The method variation of parameters is applied to differential equations of the form of equation 1.2.8
and goes as follows. First find the solution y = c1y1 + c2y2 of the differential equation ay′′ + by′ + c = 0.
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Now replace c1 by u1(t) and c2 by u2(t) to get y = u1(t)y1 + u2(t)y2. Now it is possible to find y′ and
y′′. Let’s first (for no specific reason but that the outcome will be convenient) assume that

u′1(t)y1(t) + u′2(t)y2(t) = 0. (1.2.12)

Working everything out, we eventually find that

u′1(t)y
′
1(t) + u′2(t)y

′
2(t) = g(t). (1.2.13)

Now, let’s define the Wronskian determinant (or simply Wronskian) W (y1, y2) as

W (y1, y2)(t) =

∣∣∣∣∣y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣∣ = y1(t)y′2(t)− y′1(t)y2(t). (1.2.14)

If we solve for u′1 and u′2 in equations 1.2.12 and 1.2.13, we find that

u′1(t) = − y2(t)g(t)
W (y1, y2)(t)

and u′2(t) =
y1(t)g(t)

W (y1, y2)(t)
. (1.2.15)

Solving this gives as a particular solution for the differential equation

Y (t) = −y1(t)
∫ t

t0

y2(s)g(s)
W (y1, y2)(s)

ds+ y2(t)
∫ t

t0

y1(s)g(s)
W (y1, y2)(s)

ds, (1.2.16)

for any convenient t0 in the interval. So this makes the general solution for the differential equation:

y = c1y1 + c2y2 + Y (t). (1.2.17)

1.3 Initial value problems and boundary value problems

1.3.1 Initial value problems

Sometimes, next to a differential equation, also certain conditions are given. For example, the values of
y and y′ at a given time t0 are given:

y(t0) = y0, y′(t0) = y′0. (1.3.1)

Such conditions are called initial conditions. If these conditions are given, the problem is called an
initial value problem. Finding the general solution for the differential equation isn’t sufficient to solve
the problem. You have to find the values c1 and c2 such that the initial conditions are met.

1.3.2 Boundary value problems

Sometimes not the initial conditions at a time t0 are given, but the conditions are two different times are
given:

y(α) = y0, y(β) = y1. (1.3.2)

Such conditions are called boundary conditions. If these conditions are given, the problem is called
a (two-point) boundary value problem. Once more the values c1 and c2 should be found such that
the boundary conditions are met, to solve the problem.
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2. Power Series Solutions

2.1 Power Series for Ordinary Points

2.1.1 Power series

A power series f(x) is a series given by
∞∑

n=0

an(x− x0)n = lim
m→∞

m∑
n=0

an(x− x0)n. (2.1.1)

It is said to converge if this limit exists. Otherwise it diverges. There is a radius of convergence ρ
such that the series converges for |x− x0| < ρ and diverges for |x− x0| > ρ. For |x− x0| = ρ the series
may either converge or diverge. This needs to be tested separately.

The radius of convergence can often be found using the ratio test. Consider the limit of the absolute
value of the ratio of two subsequent terms in the summation, being

lim
n→∞

∣∣∣∣an+1(x− x0)n+1

an(x− x0)n

∣∣∣∣ = |x− x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x− x0|L. (2.1.2)

The series converges if |x − x0|L < 1 and diverges if |x − x0|L > 1. In other words, the radius of
convergence here is ρ = 1/L.

Series can also be tested for equality. If we have two series a and b such that
∞∑

n=0

an(x− x0)n =
∞∑

n=0

bn(x− x0)n, (2.1.3)

then all coefficients must be equal. So an = bn for every n.

Let f (n)(x) denote the nth derivative of f(x). If the coefficients an are such that

an =
f (n)(x0)

n!
, (2.1.4)

then the series is called a Taylor series for the function f about x = x0.

2.1.2 Ordinary and singular points

Let’s consider second order linear differential equations, where the coefficients are functions of the inde-
pendent variable (which is usually x). The general form of the homogeneous equation is

P (x)y′′ +Q(x)y′ +R(x) = 0. (2.1.5)

For simplicity we will assume that P (x), Q(x) and R(x) are all polynomials. Let’s suppose we want to
solve this equation in the neighborhood of a point x0. Such a point x0 is called a ordinary point if
P (x0) 6= 0. If, however, P (x0) = 0, then the point is called a singular point.

2.1.3 Series solutions near an ordinary point

It’s often hard to find a normal solution for equation 2.1.5. But let’s suppose that we look for solutions
of the form

y = a0 + a1(x− x0) + . . .+ an(x− x0)n + . . . =
∞∑

n=0

an(x− x0)n. (2.1.6)
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We assume that this series converges in an interval |x− x0| < ρ for some ρ > 0. For example, if we want
to solve the differential equation y′′ + y = 0, we can first find that

y′′ = 2a2 + 6a3(x− x0) + . . .+ n(n− 1)an(x− x0)n−2 + . . . =
∞∑

n=0

(n+ 2)(n+ 1)an+2(x− x0)n. (2.1.7)

The differential equation thus becomes
∞∑

n=0

(n+ 2)(n+ 1)an+2(x− x0)n + an(x− x0)n = y′′ + y = 0 =
∞∑

n=0

0(x− x0)n. (2.1.8)

We now have an equation with two sums. The two sums are only equal if all the coefficients are equal.
This results in

(n+ 2)(n+ 1)an+2 + an = 0 ⇒ an+2 = − an

(n+ 2)(n+ 1)
. (2.1.9)

This relation is a recurrence relation, expressing a coefficient as a function of its predecessors. For
arbitrary coefficients a0 and a1 we can find all the coefficients, and thus find the solution to the differential
equation.

2.1.4 Convergence of the solution

The solution found in the last paragraph converges around x0. But what is the radius of convergence?
It turns out that this depends on the roots of P (x) (being the values x such that P (x) = 0). Let’s
consider all the roots of P (x) and draw them in the complex plane. Now let’s also draw x0. The radius
of convergence is the minimum distance between x0 and any root of P (x).

For example, if P (x) = x2−2x+2 = (x−1)2 +1, then the roots are 1± i. If also x0 = 0, then the radius
of convergence is simply

√
2.

2.2 Singular Points

2.2.1 Regular singular points

Let’s define p(x) = Q(x)
P (x) and q(x) = R(x)

P (x) . Normally we could rewrite the differential equation to

y′′ + p(x)y′ + q(x)y = 0. (2.2.1)

For singular points this isn’t possible since P (x0) = 0. In this case using power series gives problems.
That’s why we need to find other ways to solve these problems. Solving this problem can be split up in
two separate cases, depending on whether x0 is a regular singular point or an irregular singular
point. To determine this, we need to examine the limits

p0 = lim
x→x0

(x−x0)p(x) = lim
x→x0

(x−x0)
Q(x)
P (x)

, and q0 = lim
x→x0

(x−x0)2 = q(x) = lim
x→x0

(x−x0)2
R(x)
P (x)

.

(2.2.2)
If both these limits exist (they are finite), then the point x0 is a regular singular point. If either of these
limits (or both) do not exist, then x0 is an irregular singular point.

2.2.2 Euler equation

A relatively simple differential equation with a regular singular point is the Euler equation, being

x2y′′ + αxy′ + βy = 0. (2.2.3)
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Let’s assume a certain solution has the form y = xr. The differential equation then becomes

x2(xr)′′ + αx(xr)′ + βxr = xr (r(r − 1) + αr + β) = 0. (2.2.4)

So we need to solve (r(r − 1) + αr + β) to find r. There are three given possibilities. If r has two real
distinct roots r1 and r2, then the general solution is

y = c1x
r1 + c2x

r2 . (2.2.5)

If the roots are real, but equal, then the general solution can be shown to be

y = (c1 + c2 lnx)xr1 . (2.2.6)

If the roots are complex, such that r = λ± µi, then the general solution is

y = xλ (c1 cos (µ lnx) + c2 sin (µ lnx)) . (2.2.7)

2.2.3 Negative x

The above solutions are correct for positive x. If x < 0 strange situations occur with possibly complex
or undefined numbers. But if we define ξ = −x, then we find the same solutions (with ξ instead of x).
So we can rewrite the equations of the last paragraph to

y = c1|x|r1 + c2|x|r2 , (2.2.8)

y = (c1 + c2 ln |x|)|x|r1 , (2.2.9)

y = |x|λ (c1 cos (µ ln |x|) + c2 sin (µ ln |x|)) . (2.2.10)

2.2.4 Series solutions near a singular point

Let’s consider a regular singular point. We assume this point is x0 = 0. (If x0 6= 0 simply make the
change of variable t = x− x0.) We can rewrite our differential equation to

y′′ + p(x)y′ + q(x)y = x2y′′ + x(xp(x))y′ + x2q(x)y = 0. (2.2.11)

Note that for a regular singular point the parts xp(x) and x2q(x) have a value as x → 0. Let’s now
assume that a solution has the form

y = xr
∞∑

n=0

anx
n =

∞∑
n=0

anx
r+n. (2.2.12)

We only need to find the values of r and the coefficients an. If we calculate y′ and y′′ and put this back
in the differential equation, we find that

F (r) = r(r − 1) + p0r + q0 = 0. (2.2.13)

This equation is called the indicial equation. Its roots r1 and r2 (in which we suppose that r1 ≥ r2)
are called the exponents of singularity. We have now found r. The coefficients can be found using
the recurrence relation

F (r + n)an +
n−1∑
k=0

ak ((r + k)pn−k + qn−k) = 0. (2.2.14)
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Note that the coefficients depend on the values of a0 and r. a0 is arbitrary, and for simplicity usually
a0 = 1 is chosen. r is not arbitrary though. To indicate which r has been used to calculate the coefficients,
the coefficients are usually written as an(r1) or an(r2). Now that we have found the coefficients, we can
write the solutions. Since we have two solutions r1 and r2, we have two solutions, being

y1(x) = |x|r1

(
1 +

∞∑
n=1

an(r1)xn

)
and y2(x) = |x|r2

(
1 +

∞∑
n=1

an(r2)xn

)
. (2.2.15)

Note that we have taken the absolute value of x again, according to the trick of the previous paragraph.
The general set of solutions now consists of all linear combination c1y1 + c2y2 of these solutions.

2.2.5 Equal roots

There are, however, a few catches to the method described in the last paragraph. If r1 = r2 we will find
the same solution twice. We want two solutions to find the general solution set, and we only have one,
being y1. So we need another method to find a new solution. Let’s assume that the new solution has the
form

y2(x) = y1(x) ln |x|+ |x|r1

∞∑
n=1

bnx
n. (2.2.16)

All we need to do now is find the coefficients bn. The procedure for this is simple. First calculate y′2 and
y′′2 . Then substitute these in the differential equation, and solve for the coefficients bn.

2.2.6 Roots differing by an integer

Let’s consider the term F (r + n) of the recurrence relation. If this term is 0, it is impossible to find
an. If r = r1 we will always find a correct solution y1. But if r = r2 and n = r1 − r2 we find that
F (r + n) = F (r2) = 0. So there is a problem. Now let’s assume the second solution has the form

y2(x) = ay1(x) ln |x|+ |x|r2

(
1 +

∞∑
n=1

cnx
n

)
. (2.2.17)

Just like in the previous paragraph, the values of the constant a and the coefficients cn can be found by
substituting y2, y′2 and y′′2 in the differential equation.
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3. The Laplace Transform

3.1 Laplace transform definitions

3.1.1 Improper integrals

The Laplace transform involves an integral from zero to infinity, which is a so-called improper inte-
gral. Such an integral is defined as ∫ ∞

a

f(t) dt = lim
A→∞

∫ A

a

f(t) dt. (3.1.1)

Such an integral can converge to a certain value or diverge.

3.1.2 Integral transforms

An integral transform is a relation of the form

F (s) =
∫ β

α

K(s, t) f(t) dt, (3.1.2)

where K(s, t) is a given function, called the kernel of the transformation. This relation transforms the
function f into another function F , which is called the transform of f .

3.1.3 Laplace transform

One such integral transform is the Laplace transform, which is often useful for linear differential
equations. In this transform, K(s, t) = e−st, α = 0 and β = ∞. So the Laplace transform, denoted by
L{f(t)} (even though the L is often written slightly different), is defined as

L{f(t)} = F (s) =
∫ ∞

0

e−st f(t) dt. (3.1.3)

Now suppose |f(t)| ≤ Keat for t ≥M for certain constants K, a and M , then the Laplace transformation
exists for s > a. An overview of Laplace transforms can be seen in table 1.

Function f(t) = L−1{F (s)} Laplace Transform F (s) = L{f(t)} Range Notes
1 1

s s > 0
tn n!

sn+1 s > 0 n = positive integer
eat 1

s−a s > a

sin at a
s2+a2 s > 0

cos at s
s2+a2 s > 0

sinh at a
s2−a2 s > |a|

cosh at s
s2−a2 s > |a|

Table 1: Laplace transforms of basic functions.
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3.1.4 Linear operators

It can also be shown that the Laplace transform is a linear operator, meaning that for any constants
c1 and c2 and functions f1(t) and f2(t),

L{c1f1(t) + c2f2(t)} = c1L{f1(t)}+ c2L{f2(t)}. (3.1.4)

Using this theorem and table 1, it is possible to transform many functions quite easily.

Define L−1{F (s)} as the inverse transform of F (s), meaning that f(t) = L−1{L{f(t)}}. Then also
L−1 is a linear operator. So this gives

L−1{c1F1(s) + c2F2(s)} = c1L
−1{F1(s)}+ c2L

−1{F2(s)} (3.1.5)

3.1.5 Laplace transform of derivatives

The Laplace transform of f ′(t) is related to the Laplace transform of f(t) (if it exists), by the equation

L{f ′(t)} = sL{f(t)} − f(0). (3.1.6)

If f (n) is the n’th derivative of f , then also

L{f (n)(t)} = snL{f(t)} − sn−1f(0)− sn−2f ′(0)− . . .− sf (n−2)(0)− f (n−1)(0). (3.1.7)

3.2 Functions and operators

3.2.1 Unit step function

The unit step function, also called the Heaviside function, is denoted by uc(t). It is defined such
that uc(t) = 0 if t < c and uc(t) = 1 for t ≥ c.

(In other words, in an equation like uc(t)f(t), the function uc ”activates” the function f(t) only for t ≥ c,
meaning for values of t smaller than c, the function is just 0. To ”deactivate” the function f(t), the
function (1− uc(t))f(t) can be used.)

The Laplace transform of uc, with range s > 0, is

L{uc(t)} =
e−cs

s
. (3.2.1)

If F (s) = L{f(t)} and f(t) = L−1{F (s)}, then

L{uc(t)f(t− c)} = e−csF (s) ⇔ uc(t)f(t− c) = L−1{e−csF (s)}. (3.2.2)

Analogous, it can be shown that

L{ectf(t)} = F (s− c) ⇔ ectf(t) = L−1{F (s− c)}. (3.2.3)

3.2.2 Delta function

The Dirac delta function δ(t) (also called the delta function or the unit impulse function) is
defined such that

δ(t) = 0 for t 6= 0 and
∫ ∞

−∞
δ(t)dt = 1. (3.2.4)
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The Laplace transform of this function is

L{δ(t− t0)} = e−t0s. (3.2.5)

From this follows that L{δ(t)} = e0 = 1. And finally, the integral of the product of the delta function
and any continuous function f is ∫ ∞

−∞
δ(t− t0)f(t)dt = f(t0). (3.2.6)

3.2.3 The convolution integral

If F (s) = L{f(t)} and G(s) = L{g(t)} both exist for s > a ≥ 0, then

H(s) = F (s)G(s) = L{h(t)}, s > a, (3.2.7)

where h(t) is

h(t) =
∫ t

0

f(t− τ)g(τ)dτ =
∫ t

0

f(τ)g(t− τ)dτ. (3.2.8)

Note the difference between t and τ . The function h is known as the convolution of f and g and the
integrals in the last equation are known as convolution integrals. It is conventional to write the above
equation as h(t) = (f ∗ g)(t).
The ∗ is more or less similar to a multiplication. The following rules apply.

f ∗ g = g ∗ f, (3.2.9)

f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2, (3.2.10)

(f ∗ g) ∗ h = f ∗ (g ∗ h), (3.2.11)

f ∗ 0 = 0 ∗ f. (3.2.12)

However, in general f ∗ 1 6= f . Keep these rules in mind.

3.3 Solving differential equations

3.3.1 Solving a second order initial value problem

Suppose we have a differential equation of the form

ay′′ + by′ + cy = f(t), (3.3.1)

with a, b and c constants. Taking the Laplace transform of both sides, and applying equations 3.1.4 and
3.1.7, gives

aL{y′′}+bL{y′}+cL{y} = a(s2L{y}−sy(0)−y′(0))+b(sL{y}−y(0))+cL{y} = L{f(t)} = F (s). (3.3.2)

Solving this for L{y} = Y (s) gives

Y (s) = L{y} =
(as+ b)y(0) + ay′(0)

as2 + bs+ c
+

F (s)
as2 + bs+ c

. (3.3.3)

Now L{y} is known. To find f(t), we simply need to transform it back: f(t) = L−1{L{y}}. But the
inverse Laplace transform is not always easy to find. This problem is known as the inversion problem
for the Laplace transform.

11



3.3.2 Inversion problem for the Laplace transform

To find L−1{F (s)} for some function F (s), it’s wise to split F (s) up in pieces that occur in table 1, and
use equation 3.1.5 to inversely transform all the pieces. However, this splitting up in pieces often isn’t
that easy. Especially when fractions are present, this can be difficult. That’s why the following example
shows a method in which fractions can be split up.

From the differential equation y′′ + y = sin 2t follows

Y (s) =
2s3 + s2 + 8s+ 6
(s2 + 4)(s2 + 1)

. (3.3.4)

We want to split this fraction up in separate fractions, one with denominator s2 + 4 and the other with
denominator s2 + 1, like

Y (s) =
a

s2 + 4
+

b

s2 + 1
=
a(s2 + 1) + b(s2 + 4)

(s2 + 4)(s2 + 1)
, (3.3.5)

for certain a and b. From this we see that a(s2 + 1) + b(s2 + 4) = 2s3 + s2 + 8s+ 6. But, if a and b are
just constants, there are no third powers of s on the left side of the equation. So let’s just suppose that
b = cs + d. Now it’s easy to see that c = 2. Working out the rest of the equation gives a = −2/3 and
d = 5/3. So finally we have split up the fraction to

Y (s) =
−2/3
s2 + 4

+
2s

s2 + 1
+

5/3
s2 + 1

. (3.3.6)

Using table 1 we can find

y = −1
3

sin 2t+ 2 cos t+
5
3

sin t. (3.3.7)

3.3.3 Discontinuous forcing functions

If the nonhomogeneous term of the differential equation, also called the forcing term, is discontinuous,
solving the differential equation can be difficult. To illustrate how to solve such equations, we handle an
example. To solve the differential equation

y′′ + 4y = u4(t)(t− 4)− u8(t)(t− 8) y(0) = 0 y′(0) = 0, (3.3.8)

we take the Laplace transform to find

Y (s) =
e−4s − e−8s

s2(s2 + 4)
. (3.3.9)

It is now often wise to define H = 1
s2(s2+4) , such that Y (s) = (e−4s − e−8s)H(s). If we define h(t) =

L−1{H(s)}, then taking the inverse Laplace transform, and using equation 3.2.2, gives

y(t) = u4(t)h(t− 4)− u8(t)h(t− 8). (3.3.10)

We only need to find h(t). Rewriting H(s) differently gives

H(s) =
1
4

1
s2
− 1

8
2

s2 + 22
⇒ h(t) = L−1{H(s)} =

1
4
t− 1

8
sin 2t, (3.3.11)

which can be inserted in equation 3.3.10 to get the solution of our differential equation.
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3.3.4 Using the convolution integral

Consider the differential equation
ay′′ + by′ + cy = g(t), (3.3.12)

where a, b and c are constants. Let’s define L{g(t)} = G(s) and define Φ(s) and Ψ(s) as

Φ(s) =
(as+ b)y0 + ay′0
as2 + bs+ c

, Ψ(s) =
G(s)

as2 + bs+ c
. (3.3.13)

By taking the Laplace transform of the differential equation, we find

Y (s) = Φ(s) + Ψ(s) ⇔ y(t) = φ(t) + ψ(t), (3.3.14)

where φ(t) = L−1{Φ(s)} and ψ(t) = L−1{Ψ(s)}. It is convenient to write Ψ(s) as

Ψ(s) = H(s)G(s), (3.3.15)

where H(s) = 1
as2+bs+c . The function H(s) is known as the transfer function. Using the convolution

integral, we can solve for ψ(t):

ψ(t) = L−1{H(s)G(s)} =
∫ t

0

h(t− τ)g(τ)dτ, (3.3.16)

where h(t) = L−1{H(s)}. The function h(t) is called the impulse response of the system.
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4. Systems of First Order Linear Equations

4.1 Introduction to First Order Equations

4.1.1 Relevance

This chapter is about first order linear equations. But why would we devote an entire chapter to it? Well,
they can be very useful, as you can transform any differential equation to a set of first order equations.
For example, the nth order equation

y(n) = F (t, y, y′, . . . , y(n−1)) (4.1.1)

can be transformed into a system of linear equations by setting

x1 = y, x2 = y′, x3 = y′′, . . . , xn = y(n−1). (4.1.2)

This would give a system of first order differential equations, consisting of the equations

x′1 = x2

x′2 = x3

...
x′n−1 = xn

x′n = G(t, x1, x2, . . . , xn),

(4.1.3)

where G is a function that depends on the original function F .

4.1.2 Definitions

The general form of a system of first order differential equations is

x′1 = F1(t, x1, x2, . . . , xn)
x′2 = F1(t, x1, x2, . . . , xn)

...
x′n = F1(t, x1, x2, . . . , xn).

(4.1.4)

The system is said to have a solution on the interval I : α < t < β if there exists a set of n functions

x1 = φ1(t), x2 = φ2(t), . . . , xn = φn(t), (4.1.5)

that satisfies the corresponding system of equations on that interval.

If each of the functions F1, F2, . . . , Fn is a linear function of x1, x2, . . . , xn, then the system of equations
is said to be linear. Otherwise it is nonlinear. The most general form of a system of n first order linear
differential equations is therefore

x′1 = p11(t)x1 + . . .+ p1n(t)xn + g1(t)
x′1 = p21(t)x1 + . . .+ p2n(t)xn + g2(t)

...
x′1 = pn1(t)x1 + . . .+ pnn(t)xn + gn(t).

(4.1.6)
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If also each of the functions g1(t), . . . , gn(t) is zero for all t in the interval I, then the system is said to
be homogeneous. Otherwise it is nonhomogeneous.

We can rewrite the general form to a much simpler form, involving matrices. This would give

x′ = P (t)x + g(t), (4.1.7)

where P (t) is the matrix formed by all the functions pij(t).

4.1.3 Homogeneous systems

In homogeneous systems g(t) = 0. Such systems can therefore be written like

x′ = P (t)x. (4.1.8)

Let’s suppose we’re dealing with a system of the nth order. Also suppose we have n solutions x1, . . . ,xn

to this system. Now any linear combination c1x1 + . . .+ cnxn of these vectors is also a solution. In fact,
we can put the n solutions we had in a matrix X(t), being

X(t) =
[
x1(t) . . . xn(t)

]
. (4.1.9)

Now every vector φ(t) satisfying

φ(t) = c1x1 + . . .+ cnxn = X(t)c (4.1.10)

is a solution to our system of first order differential equations. If the linear combinations of the set
x1, . . . ,xn contain all solutions to the system, then this set is called a general solution set.

Any general solution set that is linearly independent at the interval I is said to be a fundamental set
of solutions for this interval. For such a set, every solution φ can be expressed as φ = Xc in exactly
one way.

Let’s define the Wronskian of the n solutions (denoted by W [x1, . . . ,xn]) as

W [x1, . . . ,xn](t) = detX(t). (4.1.11)

If W [x1, . . . ,xn] 6= 0 on a certain interval I : α < t < β, then the vectors x1, . . . ,xn are linearly
independent on I and thus form a fundamental set of solutions.

4.1.4 Fundamental matrices

If the set x1, . . . ,xn is a fundamental set of solutions, then the matrix X(t) with columns x1, . . . ,xn is
called the fundamental matrix. Since this is an important matrix, it is written with a different sign,
being Ψ(t). Any solution x to the system of differential equations can now be written as

x(t) = Ψ(t)c, (4.1.12)

for some constant vector c. Now let’s suppose we need to solve an initial value problem. An initial
vector x0 = x(t0) is given. We have already found Ψ(t) with the methods described above. We just
have to find c such that

x0 = Ψ(t0)c ⇒ c = Ψ−1(t0)x0. (4.1.13)

The solution can now be found using

x = Ψ(t)c = Ψ(t)Ψ−1(t0)x0. (4.1.14)

If the matrix Ψ(t) satisfies the condition Ψ(t0) = I, where I is the identity matrix, then it is a special
fundamental matrix. Such a matrix is denoted by Φ(t). Using this fact, the solution reduces to

x = Φ(t)x0. (4.1.15)
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4.2 Homogeneous Systems with Constant Coefficients

4.2.1 Relevance of eigenvalues

Let’s turn our attention to homogeneous systems with constant coefficients, meaning that the
matrix P does not depend on t. Since the matrix is now constant, we use a different sign for it, being
A. A system of equations can now be expressed as x′ = Ax. Let’s suppose every solution x(t) to this
system of equations can be written as

x(t) = ξert, (4.2.1)

for some constant vector ξ. Using this, we can rewrite the system of equations to

rξert = Aξert ⇒ (A− rI)ξ = 0. (4.2.2)

There are nontrivial solutions (meaning ξ 6= 0) to this equation if det (A − rI) = 0. This is a familiar
equation in Linear Algebra. It is only true if r is an eigenvalue of A. The solution set of x′ = Ax therefore
depends on those eigenvalues. In the following paragraphs, a closer look is given to the eigenvalues.

4.2.2 Real and different eigenvalues

If A has n eigenvalues (with n being the size of the square matrix A) that are all real and different
from each other, the solutions are relatively easy to find. Let’s call the eigenvalues r1, . . . , rn and the
corresponding eigenvectors ξ1, . . . , ξn. The corresponding solutions are

x1(t) = ξ1e
r1t, . . . ,xn(t) = ξne

rnt. (4.2.3)

These solutions also form a fundamental solution set. This can be shown by looking at the Wronskian of
the set, being

W [x1, . . . ,xn](t) =
∣∣ξ1er1t . . . ξne

rnt
∣∣ = e(r1+...+rn)t |ξ1 . . . ξn| . (4.2.4)

The second part of this equation was derived using determinant calculation rules. Since the eigenvectors
are linearly independent, the determinant of the matrix on the right side is nonzero. Also the exponential
in this equation is nonzero. Therefore the Wronskian is nonzero, proving that the set of solutions ξ1, . . . , ξn
forms a fundamental set of solutions.

4.2.3 Complex eigenvalues

The solutions of det (A − rI) = 0 are not always real. Sometimes the eigenvalues are complex. Let’s
assume A contains no complex numbers. In that case complex eigenvalues always come in pairs. In
fact, if r1 = λ + µi is an eigenvalue, then its complex conjugate r2 = λ − µi is also an eigenvalue. The
corresponding eigenvectors ξ1 = a + bi and ξ2 = a− bi are also complex conjugates.

Using these data, we can rewrite x1 = ξ1e
rt to

x1(t) = eλt(a cosµt− b sinµt) + eλt(a sinµt+ b cosµt)i = u(t) + v(t)i. (4.2.5)

Equivalently x2(t) = u(t) − v(t)i. Now we have two solutions to the system of equations. But these
solutions are complex, and we are looking for real solutions.

However, it turns out that u and v are also linearly independent solutions of the system of equations.
Therefore the solutions belonging to the two complex eigenvalues r1 and r2 are

u(t) = eλt(a cosµt− b sinµt),
v(t) = eλt(a sinµt+ b cosµt).

(4.2.6)
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4.2.4 Repeated eigenvalues

It may occur that a matrix A with size n× n has a repeated eigenvalue r (the multiplicity of r is greater
than one). If the amount of eigenvectors corresponding to r is equal to the multiplicity of r, then there
is no problem. The system can be solved using the methods from paragraph 4.2.2. If, however, an
eigenvalue r doesn’t have enough eigenvectors, we don’t get n solutions for the entire system. So more
tricks are needed to find more solutions.

Let’s first look at the case where 1 eigenvector is missing. Of course the eigenvalue r always has at least
one corresponding eigenvector ξ. So x1 = ξert is already a solution. A second solution will then be of
the form

x2 = ξtert + ηert, (4.2.7)

where η is a constant vector called the generalized eigenvector. It can be found using

(A− rI)η = ξ. (4.2.8)

This equation is always inconsistent, and therefore has infinitely many solutions. One of the components
of η can therefore be taken as a constant. Which component is assumed to be a constant does not effect
the final solution. Once η is determined, the missing solution can be found and the system of equations
can be solved.

If two eigenvectors corresponding to one eigenvalue r are missing, things get slightly more complicated.
The first two solutions x1 and x2 can be found using the method described above. The third solution
can be found using

x3 = ξ
1
2
t2ert + ηtert + ςert, (4.2.9)

where ς is a constant vector, which can be found using

(A− rI)ς = η. (4.2.10)

If more eigenvectors are missing, this method can be expanded, analog to the method shown above.

4.3 Nonhomogeneous Linear Systems

4.3.1 Basics of nonhomogeneous systems

Let’s now consider the system of differential equations given by

x′ = P (t)x + g(t). (4.3.1)

The general solution has the form of

x = c1x1(t) + . . .+ cnxn(t) + v(t). (4.3.2)

The first part of this solution is the general solution to the homogeneous system. It is already known how
to find this. The vector v(t) is any specific solution to the nonhomogeneous system as given by equation
4.3.1. How to find that is something we’ll be looking at now.

4.3.2 Methods of finding a solution

There are several methods of solving such a system. The first method is called Diagonalization, which
uses matrix inverses. As finding the inverse of a matrix can be a tedious process, this method is often
not preferred.
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A second way of finding a solution is using the Laplace transform. This especially comes in handy when
g(t) contains a unit step function or a unit impulse function. The method itself isn’t very difficult. Let’s
consider the system

x′ = Ax + g(t), (4.3.3)

where A is some constant matrix. Taking the Laplace transform gives

sX(s)− x(0) = AX(s) + G(s), (4.3.4)

where X(s) = L{x} is the Laplace transform of x. This equation should then be solved for X(s), which
should then be transformed back to the solution x.

The other two methods we will discuss are the method of undetermined coefficients and the method
of variation of parameters.

4.3.3 Method of undetermined coefficients

If the components of the function g(t) are polynomial, exponential or sinusoidal functions (or sums or
products of these), then the method of undetermined coefficients can be used.

First assume a general form of the specific solution v, with several undetermined coefficients. Then insert
this solution into equation 4.3.1. After this, you should try to solve for the undetermined coefficients.

If the undetermined coefficients can not be solved, then you might try a different form of a specific
solution. If any part of this form is already present in the general solution of the homogeneous system,
it is often worth while multiplying this part by a factor t.

4.3.4 Method of variation of parameters

In homogeneous systems, the general solution can be found using x = Ψ(t)c, where Ψ is the fundamental
matrix of the system and c is some constant vector. For nonhomogeneous systems this is not possible.
However, when using the method of variation of parameters, we assume that the general solution can be
written like

x = Ψ(t)u(t), (4.3.5)

where u(t) is some vector function of t. It can then be shown that

Ψ(t)u′(t) = g(t), (4.3.6)

or equivalently,

u(t) =
∫

Ψ−1(t)g(t)dt+ c, (4.3.7)

where c is an arbitrary constant vector. The general solution can now be written as

x = Ψ(t)u = Ψ(t)c + Ψ(t)
∫

Ψ−1(t)g(t)dt. (4.3.8)

Note that the part Ψ(t)c is the solution to the homogeneous system.

The method of variation hasn’t got many constraints and is therefore the most general method of solving
systems of nonhomogeneous linear differential equations.
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5. Phase Portraits and Stability

5.1 Phase Portraits for Linear Systems

5.1.1 Phase Portraits

Many differential equations can’t be solved analytically. If we have a system, described by a differential
equation, we still want to get an idea of how that system behaves. Let’s consider the system

x′ = Ax. (5.1.1)

If at some given x the value of x′ = 0, the system doesn’t change. In that case the vector x is an
equilibrium solution, also called a critical point. These points are often of special importance.
However, for a consistent matrix A (det A = 0) only the point 0 is a critical point. In the rest of this
chapter we assume A is consistent.

Let’s suppose we have found a vector function x(t) that satisfies equation 5.1.1. In case A is a 2 × 2
matrix, such a function can be viewed as a parametric representation for a curve in the x1x2-plane. Such
a curve is called a trajectory, the x1x2-plane is called the phase plane and a representative set of
trajectories is called a phase portrait.

Phase portraits can have many shapes. To get a general idea of them, we examine phase portraits of first-
order linear differential equations, which we have already studied in detail. In the following paragraphs
we will only be looking at a 2× 2 matrix A.

5.1.2 Real unequal eigenvalues of the same sign

If the matrix A has two real unequal eigenvalues of the same sign, then the solution of system 5.1.1 is

x = c1ξ1e
r1t + c2ξ2e

r2t. (5.1.2)

If r1 and r2 are both negative, then as t → ∞, x → 0. In this case the point 0 is called a nodal sink.
All trajectories go to this sink.

If, however, r1 and r2 are both positive, then as t → ∞, x diverges away from 0. Now the point 0 is
called a nodal source. All trajectories go away from this source.

Another thing can be noted for these kinds of solutions. If r1 > r2 > 0 or r1 < r2 < 0, then ξ1 has the
most influence on the trajectory of x. Therefore the trajectory will be mostly tangent to ξ1.

5.1.3 Real eigenvalues of opposite sign

If the matrix A has two eigenvalues of opposite sign, then the solution still has the form of equation 5.1.2.
However, there won’t be a sink or a source, but a saddle point. Let’s suppose r1 > 0 > r2. As t→∞
the part of the solution ξ2e

r2t disappears and x will be (approximately) a multiple of ξ1. If, however,
c1 = 0 (which is the case if x0 is a multiple of ξ2), then the trajectory of x does converge to 0.

5.1.4 Equal eigenvalues with independent eigenvectors

If A has two equal eigenvalues (so an eigenvalue with multiplicity 2) with independent eigenvectors, the
solution will still be of the form of equation 5.1.2. In this case r1 = r2 = r. If r < 0, then all trajectories
will directly converge to 0 in a straight line. If r > 0 all trajectories will diverge away from 0 in a straight
line. As the phase portrait therefore looks like a star, the point 0 is called a star point. It’s also called
a proper node.
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5.1.5 Equal eigenvalues with a missing eigenvector

If A has only one eigenvalue with one eigenvector, then the solution will be of the form

x = c1ξe
rt + c2(ξtert + ηert). (5.1.3)

This can also be written as
x = ((c1ξ + c2η) + c2ξt) ert = yert. (5.1.4)

Here the vector y largely determines the direction of the vector, while ert determines the magnitude. As
t→∞ the part c2ξt will increase, so the direction of y will be in the direction of ξ. It is also interesting
to note that at t = 0 always x = c1ξ + c2η.

The trajectories will always converge to 0 if r < 0 and diverge from it if r > 0. This critical point is in
this case called an improper or degenerate node.

5.1.6 Complex eigenvalues

Let’s suppose A has only complex eigenvalues λ± µi (with λ 6= 0 and µ > 0). The system is typified by

x′ =

(
λ µ

−µ λ

)
x. (5.1.5)

We can transfer this system to polar coordinates, such that r =
√
x2

1 + x2
2 and θ = tan−1 x2/x1. Solving

the system will give
r = ceλt and θ = −µt+ θ0. (5.1.6)

As t increases, the trajectory will spiral around the origin, which is thus called a spiral point. If r < 0
it will spiral inward, so then the origin is a spiral sink. If r > 0 it will spiral outward, so then the origin
is a spiral source.

Let’s now look at the same situation, except we assume that λ = 0. In this case r is constant. So the
trajectories are circles, with center at the origin. The origin is therefore called a center.

5.1.7 Intermediate summary

Eigenvalues Type of Critical Point Stability
r1 > r2 > 0 Nodal Source (Node) Unstable
r1 < r2 < 0 Nodal Sink (Node) Asymptotically Stable
r2 < 0 < r1 Saddle Point Unstable

r1 = r2 > 0, independent eigenvectors Proper node/Star point Unstable
r1 = r2 < 0, independent eigenvectors Proper node/Star point Asymptotically Stable
r1 = r2 > 0, missing eigenvector Improper node Unstable
r1 = r2 < 0, missing eigenvector Improper node Asymptotically Stable
r1 = λ+ µi, r2 = λ− µi, λ > 0 Spiral point Unstable
r1 = λ+ µi, r2 = λ− µi, λ < 0 Spiral point Asymptotically Stable
r1 = λ+ µi, r2 = λ− µi, λ = 0 Center Stable

Table 2: Overview of behavior of linear systems.

All that we have discussed in this part can be summarized in a table. This is done in table 2. In this
table is also a column concerning stability. This topic will be discussed in the next part.
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5.2 Stability

5.2.1 Autonomous systems

Previously we have looked at systems of linear first order differential equations. Linear meant that only
x1, x2 and such appeared in the equation, and not something like x2

1 or lnx1. First order meant that
only x′ and not x′′ or x′′′ appeared.

Now let’s widen our view a bit more. Let’s also consider systems of nonlinear first order differential
equation. But we won’t consider all nonlinear systems. We only consider systems that can be written as

x′ = f(x). (5.2.1)

Here the function f(x) does not depend on t. So given any position vector x, the velocity x′ will always
be the same. In other words, the phase portrait of the system is constant in time. Such a system is said
to be autonomous. An example of such a system is the linear system x′ = Ax′ (with A a constant
matrix).

5.2.2 Stability Definitions

A point for which x′ = 0 is called a critical point. Now imagine a circle with radius ε around a critical
point xcr. Also imagine a second smaller circle with radius δ. Let’s take a point x0 in the δ-circle. If
the trajectory of that point leaves the ε-circle, then the critical point is called unstable. If, however, the
trajectory of every starting point x0 in the δ-circle remains entirely within the ε-circle, the critical point
is called stable.

If a point is stable, it can also be asymptotically stable. This is the case if also

lim
t→∞

x(t) = xcr, (5.2.2)

meaning that the trajectory of the starting point x0 goes to xcr. If a trajectory forms, for example, a
circle around the critical point, then it is stable but not asymptotically stable.

For asymptotically stable points, certain trajectories approach the origin. If all trajectories approach
the origin, then the critical point is said to be globally asymptotically stable. Linear systems with
det A = 0 always have only 1 critical point xcr = 0. If 0 is then stable, it is also globally asymptotically
stable.

5.2.3 Almost linear systems

Let’s now consider an isolated critical point xcr. A critical point is isolated if there are no other critical
points very close next to it. For simplicity, let’s assume xcr = 0.

An autonomous nonlinear system can be written like

x′ = Ax + g(x). (5.2.3)

If g(x) is small, then this system is close to the linear system x′ = Ax. More precisely, the system is said
to be an almost linear system if g has continuous partial derivatives and

|g(x)|
|x|

→ 0 as x→ 0. (5.2.4)

If we define r = |x|, then this can be written in scalar form as

g1(x)
r

→ 0, . . . ,
g2(x)
r

→ 0 as r → 0. (5.2.5)
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It can be shown that if g(x) is twice differentiable, then the system is always an almost linear system.

Previously we have treated stability for linear systems. An overview was shown in table 2. The stability
for an almost linear system is shown in table 3. It is important to note the difference. For most eigenvalues
the stability and the type of critical point stay the same. There are a few exceptions.

Let’s consider the case when r1 = λ+µi and r2 = λ−µi with λ = 0. If small deviations occur, it is likely
that λ 6= 0. So the critical point has become a spiral point. The other difference occurs when r1 = r2.
But now there are several more types to which the critical point can change.

Eigenvalues of linear system Type of Critical Point Stability
r1 > r2 > 0 Nodal Source (Node) Unstable
r1 < r2 < 0 Nodal Sink (Node) Asymptotically Stable
r2 < 0 < r1 Saddle Point Unstable

r1 = r2 > 0, independent eigenvectors Node or Spiral Point Unstable
r1 = r2 < 0, independent eigenvectors Node or Spiral Point Asymptotically Stable
r1 = r2 > 0, missing eigenvector Node or Spiral Point Unstable
r1 = r2 < 0, missing eigenvector Node or Spiral Point Asymptotically Stable
r1 = λ+ µi, r2 = λ− µi, λ > 0 Spiral point Unstable
r1 = λ+ µi, r2 = λ− µi, λ < 0 Spiral point Asymptotically Stable
r1 = λ+ µi, r2 = λ− µi, λ = 0 Center or Spiral Point Indeterminate

Table 3: Overview of behavior of almost linear systems.

5.2.4 Periodic Solutions

It may occur that autonomous systems x′ = f(x) have periodic solutions. Such solutions satisfy

x(t+ T ) = x(t), (5.2.6)

where T > 0 is called the period. This period is usually the smallest value such that the above relation
is satisfied. The corresponding trajectories form closed curves. If other non-closed curves spiral towards
this curve, then it is called a limit cycle.

If all trajectories that start near the limit cycle (both inside and outside) spiral towards it, then it is
called asymptotically stable. If all trajectories spiral outward, then the limit cycle is called unstable.
If trajectories on one side spiral inward and on the other side spiral outward, it is called semistable. It
may also occur that other trajectories neither spiral to nor away from a limit cycle. In that case the limit
cycle is called stable.

It is usually difficult to determine whether limit cycles exist in a system. However, there are a few rules
that may help. A closed trajectory always encloses at least one critical point. If it encloses only one
critical point, then that critical point can not be a saddle point.

We can also consider the value
df1(x)
dx1

+
df2(x)
dx2

+ . . .+
dfn(x)
dxn

. (5.2.7)

If this has the same sign throughout a simply connected region D (meaning that D has no holes), then
there is no closed trajectory lying entirely in D.

Suppose a region R contains no critical points. If a certain trajectory lies entirely in R, then this trajectory
either is a closed trajectory or spirals towards one. In either case, there is a closed trajectory present.
This last rule is called the Poincaré-Bendixson Theorem.
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6. Fourier Series

6.1 Function types

6.1.1 Periodic functions

In the last chapter we have already mentioned periodic functions, but we will briefly repeat that here. A
function f is periodic is

f(x+ T ) = f(x) (6.1.1)

for every x. Here T > 0 is the period. The smallest value of T is called the fundamental period of f .

If f and g are two functions with equal period T , then their product fg and any linear combination
c1f + c2g also have period T .

6.1.2 Orthogonal functions

The inner product of two functions u and v on the interval I : α ≤ x ≤ β is defined as

(u, v) =
∫ β

α

u(x)v(x)dx. (6.1.2)

The function u and v are said to be orthogonal on I if (u, v) = 0. A set of functions is said to be
mutually orthogonal if each distinct pair of functions is orthogonal.

Now consider the functions

um(x) = cos
mπx

L
and vn(x) = sin

nπx

L
. (6.1.3)

It can now be shown that (um, vn) = 0 for every m, n on an interval −L ≤ x ≤ L. Also, if m 6= n, then
(um, un) = (vm, vn) = 0 on the same interval. On the contrary, if m = n, then (um, un) = (vm, vn) = L
(also on −L ≤ x ≤ L).

6.1.3 Even and odd functions

A function f is said to be an even function if

f(−x) = f(x) (6.1.4)

for every x. An example is f(x) = x2. Let’s take a graph of a function and mirror it along the y-axis. If
we get back the same graph is we put in, then it is an even function.

A function is even if Similarly, a function f is said to be an odd function is

f(−x) = −f(x) (6.1.5)

for every x. So odd functions always have f(0) = 0. An example is f(x) = x or f(x) = x3. Let’s take
a graph of a function and rotate it 180◦ about the origin. If we get back the same graph as we put in,
then it is an odd function.

If f and g are even functions and p and q are odd functions, then
• c1f + c2g and fg are even.
• c1p+ c2q is odd. However pq is even.
• fp is odd. f + p is neither even nor odd.
•
∫ L

−L
f(x)dx = 2

∫ 0

−L
f(x)dx = 2

∫ L

0
f(x)dx.

•
∫ L

−L
p(x)dx = 0.
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6.1.4 Eigenfunctions

The difference between initial value problems and boundary value problems was previously discussed.
Initial value problems concerned differential equations where y and y′ were given at a certain point, while
boundary problems have y given at two different points. While there usually is a unique solution to initial
value problems, there is often not a unique solution to boundary problems. For boundary value problems
here are either 0, 1 or infinitely many solutions.

Let’s take a look at a boundary value problem concerning a homogeneous differential equations with a
certain unknown constant. For example, let’s consider

y′′ + λy = 0, y(0) = 0, y(π) = 0. (6.1.6)

Here λ is an unknown constant. The above differential equation has solution y = 0 for all λ. This is the
trivial solution in which we are not interested.

Instead, it turns out that for some values of λ there are infinitely many solutions. These values of λ for
which nontrivial solutions occur are called eigenvalues. The nontrivial solutions are called eigenfunc-
tions. For the above example, the eigenvalues turn out to be

λ1 = 1, λ2 = 4, λ3 = 9, . . . , λn = n2, (6.1.7)

where the corresponding eigenfunctions are

y1(x) = sinx, y2(x) = sin 2x, y3(x) = sin 3x, . . . , y(x) = sinnx. (6.1.8)

Just like in linear algebra, any linear combination of solutions (eigenfunctions) is also a solution to the
differential equation.

6.2 Fourier Series

6.2.1 Introduction to Fourier series

Let’s suppose we have a continuous periodic function f with period T = 2L. In that case, it can be
expressed as a Fourier series, being an infinite sum of sines and cosines that converges to f(x). This
goes according to

f(x) =
a0

2
+

∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
. (6.2.1)

Here the coefficients a0, a1, . . . and b1, b2, . . . need to be determined. It can be shown that

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx and bn =

1
L

∫ L

−L

f(x) sin
nπx

L
dx. (6.2.2)

If f is not a periodic function, it can not entirely be expressed as a Fourier series. However, the part of
f on interval −L ≤ x ≤ L can be expressed as a Fourier series, according to the above procedure.

6.2.2 Discontinuous functions

If the periodic function f is not a continuous function but a piecewise continuous function, it is still
possible to express the function using a Fourier series. However, at positions of discontinuity (where the
graph makes a ”jump”) the Fourier series never really converges to f(x). This behavior is known as the
Gibbs phenomenon.
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Another interesting phenomenon always occurs. If the value of f at a certain point x jumps from y1 to
y2, then the Fourier series at point x always returns a value of y1+y2

2 .

For functions that are not even piecewise continuous (such as for example 1
x ), Fourier series often do not

converge. Therefore Fourier series are hardly ever applicable for such functions.

6.2.3 Sine and cosine series

Let’s suppose we have an even function f and want to find the corresponding Fourier series. When we are
trying to find the b-coefficients, we will be integrating over f(x) sin nπx

L . Since sin(x) is an odd function,
this product is also odd. We know that an integral from −L to L over an odd function will give 0 as
result. Therefore bn = 0 for every n.

Since bn is always zero in the Fourier series of even functions, all the terms with sines disappear. Such a
series thus only consists of cosines and is therefore called a Fourier cosine series.

Now let’s suppose f is odd. If we make use of the fact that cos(x) is an even function, we will find that
an = 0 for every n. Therefore the Fourier series for an odd function consists only of sines. and is thus
called a Fourier sine series.

6.3 Heat Conduction Problems

6.3.1 Heat conduction in a rod

Let’s consider a thin rod, ranging from x = 0 to x = L of which the sides are insulated. Heat can only
enter via the two edges. The temperature u is now only a function of x and t. To solve this problem, we
need to use the heat conduction equation

α2uxx = ut, (6.3.1)

where α2 is the thermal diffusivity (a material property). There are several boundary values for this
problem. First there is the initial state of the rod u(x, 0). This is simply equal to some known function
f(x), so

u(x, 0) = f(x). (6.3.2)

6.3.2 Rod with open ends at u = 0

If heat can pass in/out of the rod at the edges, then the edges will always have constant temperature.
For simplicity’s sake we will assume that this temperature is 0 for both edges. Later we will consider the
case in which this is not true. So the other boundary conditions are

u(0, t) = 0, u(L, t) = 0. (6.3.3)

This differential equation is hard to solve. So to solve it, we make an assumption. We assume that the
function u(x, t) can be written as

u(x, t) = X(x)T (t). (6.3.4)

So we assume it is a product of a function of x and a function of t. Using this assumption we can separate
the problem in two differential equations

X ′′ + λX = 0, T ′ + α2λT = 0, (6.3.5)
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where λ is an unknown separation constant. Now let’s look at the first equation and combine it with the
second boundary equation. Ignoring the trivial solution X = 0, we will find that the solutions are the
eigenfunctions

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . . , (6.3.6)

associated with the eigenvalues λn = n2π2

L2 . Inserting these values in the second differential equation gives

Tn(x) = e−
n2π2α2t

L2 . (6.3.7)

We can now find a solution un = XnTn. The general solution is then any linear combination of the
specific solutions, so

u(x, t) =
∞∑

n=1

cnun(x, t) =
∞∑

n=1

cnXn(t)Tn(t) =
∞∑

n=1

cne
−n2π2α2t

L2 sin
nπx

L
. (6.3.8)

But we haven’t satisfied the first boundary conditions yet. Using u(x, 0) = f(x) we can find the coefficients
cn. The procedure for this is identical to finding a sine series for f(x). From this follows that

cn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx =

2
L

∫ L

0

f(x) sin
nπx

L
dx. (6.3.9)

6.3.3 Rod with open ends not at u = 0

But what if the edges don’t have u = 0? Let’s suppose u(0, t) = T1 and u(L, t) = T2. Now the problem
is not homogeneous anymore. So we will first make it homogeneous. We can see that

g(x) = T1 + (T2 − T1)
x

L
(6.3.10)

is a solution. In fact, this is the limit solution as t → ∞. If we now not use the initial condition
u(x, 0) = f(x), but instead use u(x, 0) = f(x)− g(x), then we once more have a homogeneous problem.
Then the coefficients can be found using

cn =
2
L

∫ L

0

(f(x)− g(x)) sin
nπx

L
dx =

2
L

∫ L

0

(
f(x)− T1 − (T2 − T1)

x

L

)
sin

nπx

L
dx. (6.3.11)

Note that this is equal to what we saw last chapter, except we replaced f(x) by f(x) − g(x). The
corresponding solution then becomes

u(x, t) = g(x) +
∞∑

n=1

e−
n2π2α2t

L2 sin
nπx

L
= T1 + (T2 − T1)

x

L
+

∞∑
n=1

e−
n2π2α2t

L2 sin
nπx

L
. (6.3.12)

This is also equal to the solution of the last paragraph, except that we put the part g(x) in front of it.

6.3.4 Rod with insulated ends

What happens if the ends of the rod are insulated? In that case they are no longer a constant temperature.
Instead, in that case X ′(0) = 0 and X ′(L) = 0. The solution process is more or less similar to that of a
rod without insulated ends. But instead of finding a sine series, the result now is a cosine series, given by

u(x, t) =
c0
2

+
∞∑

n=1

cne
−n2π2α2t

L2 cos
nπx

L
. (6.3.13)
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The coefficients are given by the equation

cn =
2
L

∫ L

0

f(x) cos
nπx

L
dx. (6.3.14)

A funny thing to note is that as t→∞, the temperature in the entire bar becomes equal to c0/2. It can
be shown that this just happens to be the average temperature of the bar.

6.4 The Wave Equation

6.4.1 Vibrations of an elastic string

Let’s examine an elastic string, connected at x = 0 and x = L. Every point x at a time t has a deflection
u(x, t). If the string is given an initial deflection, it will vibrate. If damping effects are neglected, the
governing equation is

a2uxx = utt, (6.4.1)

where a2 is a constant. This equation is called the wave equation. One of the boundary conditions of
this problem is rather trivial. As the ends of the string are fixed, we know that

u(0, t) = 0, u(L, t) = 0. (6.4.2)

To solve the problem, we also need to know the initial position u(x, 0). But this won’t suffice to solve
the problem. Also the initial velocity ut(x, 0) needs to be known. These boundary conditions can be
expressed as

u(x, 0) = f(x), ut(x, 0) = g(x). (6.4.3)

6.4.2 String with initial displacement

Suppose the string has been given an initial displacement, but no initial velocity. So ut(x, 0) = 0. This
implies that T ′(0) = 0. Solving the wave equation is very similar to solving the heat conduction equation.
The solution for X(x) will be exactly the same. The solution for T (t) will be

Tn(t) = cos
nπat

L
. (6.4.4)

The final solution will then have the form

u(x, t) =
∞∑

n=1

cn sin
nπx

L
cos

nπat

L
. (6.4.5)

The constants cn can be found using

cn =
2
L

∫ L

0

f(x) sin
nπx

L
dx. (6.4.6)

For a fixed value of n the expression sin nπx
L cos nπat

L is periodic with period T = 2L
na or equivalently having

the frequency na
2L . This frequency is called the natural frequency of the string - being the frequency at

which it will freely vibrate.

While vibrating, certain displacement patterns appear. Each displacement pattern is called a natu-
ral mode of vibration and is periodic in space. The corresponding spacial period 2L

n is called the
wavelength of the mode.
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6.4.3 String with initial velocity

Now let’s examine a string without initial displacement, but with initial velocity. So this time u(x, 0) = 0,
implying that T (0) = 0. Now we will find that

Tn(t) = sin
nπat

L
. (6.4.7)

Working out the results will give

u(x, t) =
∞∑

n=1

cn sin
nπx

L
sin

nπat

L
. (6.4.8)

To find the coefficients cn, we have to do a little bit more work than previously, as now we haven’t been
given an initial value but an initial velocity. Differentiating u(x, t) and solving for cn using Fourier series
will give

cn =
2
nπa

∫ L

0

g(x) sin
nπx

L
dx. (6.4.9)

6.4.4 String with both initial position and initial velocity

The two cases above have a disadvantage. To use the first case, we have to have a string of which all
points have no velocity at t = 0. For the second all points on the string have to have zero displacement
at that moment. This doesn’t always occur.

If f(x) 6= 0 and g(x) 6= 0 it is possible to solve the problem using separation of variables, as we have
previously performed. This is difficult though, and there is an easier way to solve the problem.

Let v(x, t) be the solution for the vibrating string with no initial velocity (g(x) = 0). Also let w(x, t) be
the solution for the string with no initial displacement (f(x) = 0). If we add the two solutions up, we get

u(x, t) = v(x, t) + w(x, t). (6.4.10)

It can now be shown that this solution satisfies all the boundary conditions. So if you have a string with
both initial displacement and initial velocity, simply split the problem up and then add up the results.

6.5 Problem Variations

6.5.1 Expanding to multiple dimensions

The heat conduction problem and the wave problem described in the previous parts are only one-
dimensional. They can be made two-dimensional or three-dimensional rather easily. We can replace
the term uxx by uxx + uyy for a two-dimensional case or uxx + uyy + uzz for a three-dimensional case.
This would make the heat conduction equation

α2 (uxx + uyy + uzz) = ut. (6.5.1)

The wave equation would then be
a2 (uxx + uyy + uzz) = utt. (6.5.2)
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6.5.2 Steady-State problems

In for example heat conduction problems, the variable u usually converges to a constant value in time.
But to what value does it occur? It stops changing if ut = 0 or equivalently

uxx + uyy + uzz = 0. (6.5.3)

This equation is called Laplace’s Equation for three dimensions. But can we solve it for a three-
dimensional problem? What do we need to know before we can solve it?

In a one-dimensional problem we needed to know either the value of u or ut at the edges of the rod. This
can be expanded to three dimensions. To solve Laplace’s equation in three dimensions, we need to know
the value of u or ut along the entire boundary of the three-dimensional space.

If u is given, the problem is slightly different than if ut is given. It therefore also has a different name. If
u is known along the edges, then the problem is called a Dirichlet problem. However, if we have been
given ut, then the problem is called a Neumann problem.

Both types of problems can be solved using the techniques demonstrated in this chapter. However, the
equations for the solution and the corresponding coefficients need to be derived once more. As there are
very many types of these problems, it is not possible to give the solution for every single type.
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7. Sturm-Liouville Problems

7.1 Homogeneous Problems

7.1.1 Sturm-Liouville problems

In this chapter, we will be examining differential equations of the form

(p(x)y′)′ − q(x)y + λr(x)y = 0, (7.1.1)

where p(x), q(x) and r(x) are given functions. y is a function of x and y′ denotes the derivative with
respect to x. Let’s define the differential operator L to be

L[y] = − (p(x)y′)′ + q(x)y. (7.1.2)

We can now rewrite the differential equation to

L[y] = λr(x)y. (7.1.3)

By using L = 1 we can also rewrite the boundary conditions to

α1y(0) + α2y
′(0) = 0, β1y(1) + β2y

′(1) = 0. (7.1.4)

Such types of problems are called Sturm-Liouville problems.

7.1.2 Lagrange’s identity

Lagrange’s identity is∫ 1

0

(L[u]v − uL[v]) dx = [−p(x) (u′(x)v(x)− u(x)v′(x))]10 . (7.1.5)

By using the boundary conditions of equation 7.1.4 we can show that the right side of this identity is 0,
and thus also ∫ 1

0

(L[u]v − uL[v]) dx = 0. (7.1.6)

Using the inner product, defined in the previous chapter, we can also write this as (L[u], v)−(u, L[v]) = 0.

7.1.3 Sturm-Liouville problem properties

Several things are known about Sturm-Liouville problems. It can be shown that all eigenvalues λ (for
which there are nontrivial solutions to the problem) are real. In fact, if we find two eigenvalues λ1 and
λ2 (with λ1 6= λ2) and corresponding eigenfunctions φ1 and φ2, then∫ 1

0

r(x)φ1(x)φ2(x)dx = 0. (7.1.7)

Also all eigenvalues are simple, meaning that each eigenvalue has only one eigenfunction (if you don’t
consider multiples of that eigenfunction). Furthermore, the eigenvalues can be ordered according to
increasing magnitude, such that λ1 < λ2 < . . . < λn < . . ., where λn →∞ as n→∞.
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7.1.4 Orthogonality

Equation 7.1.7 expresses the property of orthogonality of the eigenfunctions with respect to the weight
function r(x). The eigenfunctions are said to form an orthogonal set with respect to r(x).

Every eigenvalue has one corresponding eigenfunction. However, every multiple of this eigenfunction is
actually also an eigenfunction. So we can choose our eigenfunctions such that∫ 1

0

r(x)φ2
n(x)dx = 1. (7.1.8)

Eigenfunctions satisfying this condition are said to be normalized. Normalized eigenfunctions are said
to form an orthonormal set with respect to r(x).

7.1.5 Expressing a function as a sum of eigenfunctions

Suppose we have found all the normalized eigenfunctions φn of a Sturm-Liouville problem. Can we now
express a given function f(x) as a sum of these eigenfunctions? If so, then a solution f(x) could be
written as

f(x) =
∞∑

n=1

cnφn(x). (7.1.9)

The only trick is to find the coefficients. To find any coefficient cm, we can multiply the above equation
by r(x)φm(x) and then integrate from 0 to 1, like∫ 1

0

= r(x)φm(x)f(x)dx =
∞∑

n=1

cn

∫ 1

0

r(x)φm(x)φn(x)dx = cm, (7.1.10)

where we have used equation 7.1.7 in the last step. It follows that

cm =
∫ 1

0

r(x)φm(x)f(x)dx = (f(x), r(x)φm(x)). (7.1.11)

7.2 Nonhomogeneous Problems

7.2.1 Nonhomogeneous Sturm-Liouville problems

We have spend enough time on homogeneous problems. Now let’s turn our attention to the nonhomoge-
neous problems. These problems have the form

L[y] = − (p(x)y′)′ + q(x)y = µr(x)y + f(x), (7.2.1)

where µ is a given constant. Note the extra term f(x). Let the boundary conditions once more be

α1y(0) + α2y
′(0) = 0, β1y(1) + β2y

′(1) = 0. (7.2.2)

To solve this problem, we first look at the homogeneous problem L[y] = λr(x)y with eigenvalues λ1, λ2, . . .
and corresponding eigenfunction φ1, φ2, . . .. We will assume that the solution y = φ(x) can be written as

φ(x) =
∞∑

n=1

bnφn(x). (7.2.3)
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However, this time we can not find the coefficients bn in the way we are used to. Instead, we can find
them with a small detour. First define the coefficients cn as

cn =
∫ 1

0

f(x)φn(x)dx. (7.2.4)

The coefficients bn can then be found using

bn =
cn

λn − µ
. (7.2.5)

If λn 6= µ for all n, then the solution will simply be equal to

y = φ(x) =
∞∑

n=1

cn
λn − µ

φn(x). (7.2.6)

However, if λn = µ for some n, then there is a problem. If cn 6= 0 (for the same n), then we are
dividing by zero. It can then be shown that the nonhomogeneous problem simply doesn’t have a solution.
However, if also cn = 0, then bn remains arbitrary. In this case there are infinitely many solutions to the
nonhomogeneous problem.

7.2.2 Nonhomogeneous heat conduction problems

The generalized heat conduction equation is given by

r(x)ut = (p(x)ux)x − q(x)u+ F (x, t), (7.2.7)

with two boundary conditions and one initial condition, being

ux(0, t)− h1u(0, t) = 0, ux(1, t) + h2u(1, t) = 0, and u(x, 0) = f(x). (7.2.8)

We assume any solution will have the form

u(x, t) =
∞∑

n=1

bn(t)φn(x), (7.2.9)

where φn(x) are the eigenfunctions of the problem. To find the coefficients bn we need to do several steps.
First we need to find two intermediate coefficients Bn and γn(t), given by

Bn =
∫ 1

0

r(x)f(x)φn(x)dx, (7.2.10)

γn(t) =
∫ 1

0

F (x, t)φn(x)dx. (7.2.11)

Now the coefficient bn can be calculated using

bn(t) = Bn + e−λnt

∫ t

0

eλnsγn(s)ds. (7.2.12)

All the necessary coefficients are now known. The solution can be found by using the sum

u(x, t) =
∞∑

n=1

bn(t)φn(x). (7.2.13)
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