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1 Prerequisits

1.1 Exponents

xmxn =xm+n xm

xn = xm−n(
xm)n

=xm·n (xy)n = xnyn

xm/n =
n√m =

(
n√x

)m(
x
y

)n

=
xn

yn

n√xy =
n√x n√y

1.2 Trigonometric functions

sinθ =
a
c

cosθ =
b
c

tanθ =
a
b

=
sinθ
cosθ

sin2 +cos2 = 1
sin−θ = −sinθ
sinα

a
=

sinβ
b

=
sinγ

c

Functions

ga(x) = asin(x)

Changes the amplitude of the function.

gb(x) = sin(bx)

Changes the period of the function.

gc(x) = sin(x + c)

Changes the starting value of the function.

Double angle formulas
sin2α = 2sinαcosα

cos2α = cosα2− sinα2

Other relations
sin(π/2−α) = cosα
cos(π/2−α) = sinα

Values

θ rad sinθ cosθ tanθ

0◦ 0 0 1 0
30◦ π/6 1/2

√
3/2

√
3/3

45◦ π/4
√

2/2
√

2/2 1
60◦ π/3

√
3/2 1/2

√
3

90◦ π/2 1 0 —

1.3 Logarithmic laws

loga x = y ⇔ ay = x

ln x = loge x ⇔ lne = 1
ln x = y ⇔ ey = x

loga (ax) = x

aloga x = x eln x = x

loga (xy) = loga x + loga y

loga

(
x
y

)
= loga x− loga y

loga
(
xr) = r · loga x
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1.4 Rationalizing and factoring

Rationalizing square roots

Multiply by conjugate radical
√

x + 4−2
x

·

 √x + 4 + 2
√

x + 4 + 2


=

1
√

x + 4 + 2

Factorising quadratic equations

x2 + b︸︷︷︸
(r+s)

x + c︸︷︷︸
(r·s)

= (x + r)(x + s)

Example:

x2 + 5x−24 r + s = 5 r · s = 24
= (x−3)(x + 8)

1.5 Limits

lim
x→−∞

ex = 0 lim
x→+∞

ex =∞

lim
x→0+

ln x = −∞ lim
x→∞

ln x =∞

1.6 Line equations

y− yp = m(x− xp)

y = mx + p

1.7 Quadratic formulas

x1,2 =
−b±

√
b2−4ac

2a

x1,2 = −
p
2
±

√( p
2

)2
−q

2 Inverse trigonometric functions

Because they are not one-to-one (do the horizontal line
check/only one x for y), the domain has to be restricted
to make them one-to-one.

Strategy for solving: Take expression in function,
equal it to y, solve it so it cancels out the original func-
tion.

3 Implicit differentiation

Implicit differentiation can be applied when it is not
easily possible, or not possible at all, to solve for y
in a complicated function, such as x3 + y3 = 6xy. The
idea is to differentiate both sides with regard to x, then
solve for y′.

4 Example . . .

x2 + y2 = 25
d
dx

x2 +
d
dx

y2 = 0

y is a function of x, must be differentiated!
d
dx

y2 = 2y︸︷︷︸
outer

· y′︸︷︷︸
inner

2x + 2yy′ = 0

Note For expressions like 6xy use multiplication rule,
too!

(6xy)′ = 6xy′+ 6y

Note If term like

x−1 + y−1 = 0 ,

derivative is not (y′)−1 but still y′.

−x−2− y−2y′ = 0

4 Linear approximations and
differentials

4.1 Linear approximations

Generally, a function resembles its tangent line at a
point. This can be used to approximate values.

L(x) = f (a) + f ′(a)(x−a)
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4.2 Differentials

Differentials express the change of a function over a
certain interval.

dy = f ′(x)dx

dy represents the amount how much the function rises
or falls (change in linearization).

How to find approximate relative errors

• Express unknown, e.g. area, as a function

• Calculate the differential

• Plug in the values, also for the change in x (dx)

5 Substitution rule

5.1 For indefinite integrals

If u = g(x) is differentiable, then du = g′(x)dx. Thus,
plugging in, the integral

∫
f (x)dx turns into∫

f (g(x))︸  ︷︷  ︸
= f (u)

g′(x)dx︸  ︷︷  ︸
du

Notice that du = g′(x)dx is a differential that we plug
in.

It is permissible to operate with dx and du after inte-
gral signs as if they were differentials!

Always remember that the idea behind the substitu-
tion rule is to replace a relatively complicated integral
by a simpler one. The strategy is to find a substitution
whose differential occurs in the integral. Also consider
to substitute the dx after solving for it.

5.2 For definite integrals

This rule is more important than you think and very
much preferable to solving the indefinite integral.

b∫
a

f (g(x))g′(x)dx =

g(b)∫
g(a)

f (u)du

In words: Replace the integrating boundaries by the
value of the function of the substitution.

4 Example . . .

4∫
0

√
2x + 1dx

=

9∫
1

1
2
√

udu

=

[
1
2
·

2
3

u3/2
]9

1
=

26
3

So note that we have not substituted back, but have
indeed plugged in the values into the function u =

g(x) and calculated the integral, which saved us time!

What can also save us some time is the symmetry of
integrals.

1. If f is even [ f (−x) = f (x)], then
∫ a
−a f (x)dx =

2
∫ a

0 f (x)dx.

2. If f is odd [ f (x) = − f (−x)], then
∫ a
−a f (x)dx = 0.

6 Integration by parts

You are writing an exam and have suddenly forgotten
the rule. Don’t worry, you can easily derive it:

(uv)′ = u′v + uv′∫
(uv)′ =

∫
(u′v) +

∫
(uv′)

⇒

∫
udv = uv−

∫
vdu

A little “trick”, that is possible:∫
ln xdx

u = ln x dv = dx

du =
1
x

dx v = x

Now you can easily solve this integral.
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7 Stuck on integrating?

Sometimes you can’t find a way to solve an integral.
Try out the following strategies.

1. Simplify the integrand (if possible)

2. Look for obvious substitution

3. Look for a not-so-obvious substitution

4. Look for an even less obvious substitution

5. Try to integrate by parts

Doesn’t work at all? That sucks, but don’t give up!
Here are some tricks:

tan = sin/cos,e
√

x, u =
√

x, u2 = x

Always remember that you can still play around with
the substitution! Maybe if you square the substitution
or take the root, you can substitute it into the inte-
gral.

8 Discontinous Integrals

Integrals that have a discontinuity in [a,b] are im-
proper integrals, for instance

∫ 1
−1 1/x2dx.

If an integral is continous at [a,b) and discontinous at
b), then

b∫
a

f (x)dx = lim
t→b+

t∫
a

f (x)dx .

If f is continous at (a,b] and discontinous at a, then

b∫
a

f (x)dx = lim
t→b+

b∫
t

f (x)dx

If a < c < b and f is discontinous at c, then

b∫
a

f (x)dx =

c∫
a

f (x)dx +

b∫
c

f (x)dx

When coming from the right to the left side: a+ (posi-
tive side).
When coming from the left to the right side: a− (neg-
ative side).

If the corresponding limit exists, the integral is conver-
gent. If it does not exist (the integral turns out to be an
inifite value), it is divergent.

Stuff to remember:

b∫
−∞

f (x)dx = lim
t→−∞

b∫
t

f (x)dx

∞∫
−∞

f (x)dx) =

a∫
−∞

f (x)dx +

∞∫
a

f (x)dx

4 Example . . .

5∫
2

dx
√

x−2
= lim

t→2+

5∫
2

dx
√

x−2

lim
t→2+

2(
√

3−
√

t−2) = 2
√

3

⇒ Integral is convergent.

Short check

A short check for the con- or divergency of a special
integral:

∞∫
1

1
xp dx

is convergent if p > 1, and divergent if p ≤ 1,

Note While 1/x2 is convergent, 1/x is not, since 1/x
does not reach the x-axis fast enough.

Comparison Theorem

It is impossible to find the exact value of an improper
integral, yet you want to find out whether it is improper
or not? Use the comparison theorem:

f (x) ≥ g(x) ≥ 0 for x ≥ a

Now, if g(x) is con/divergent, then f (x) is, too! Just
take a comparable, easier function g(x) and evalute it,
it will be the same result as f (x).
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9 L’Hospitals rule

This rule is not on the schedule, but “it can make your
life much easier”, so I give it here! If

lim
x→a

f (x) = 0 or lim
x→a

f (x) = ±∞

and the same is true for g(x), then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

So this means, that the limit of f (x)/g(x) is the same
as the fraction of their derivatives. In many cases, this
is much easier to solve!

4 Example . . .

lim
t→0+

t ln t = lim
t→0+

ln t
1/t

lim
t→0+

1/t
−1/t2 = lim

t→0+
−t = 0

10 Differential Equations

10.1 Separable equations

A special type of first order differential equations. In
such functions, dy/dx can always be factored as a
function of x times a function of y.

h(y)dy = g(x)dx

Now simply integrate both sides and solve for y:∫
h(y)dy =

∫
g(x)dx

Note that if the integral yields something like lny you
should still solve for y by raising it to the power of e.

10.2 Linear differential equations

Always have the form

dy
dx

+ P(x)y = Q(x)

For instance xy′ + y = 2x, because y′ + y/x = 2. To
solve, multiply by the integrating factor

I(x) = e
∫

P(x)dx

and then integrate both sides. Note that the left side
will always be an expanded form of the multiplication
rule and can be simplfied,

y′+ P(x)y = Q(x) | · I(x) = e
∫

P(x)dx

(y · I(x))′ = Q(x) · I(x)

which makes it a child’s play to integrate it.

10.3 Second order differential equations

10.3.1 Homogenous second order . . .

ay′′+ by′+ cy = 0

This kind of equation is solvable with

y = erx→ y′ = rerx→ y′′ = r2erx .

Plugging this in, you get the auxilliary equation, with
which you have to solve.

ar2 + br + c = 0

Often, a quck way to solve it is to factor it (see sec-
tion 1.4). Otherwise, use the quadratic formulas to
solve it.

Possible solutions:

Roots of aux. eqn. General solution

r1, r2 real and distinct y = c1er1 x + c2er2 x

r1 = r2 = r y = c1erx + c2xerx

r1, r2 complex: α± iβ y = eαx(c1 cosβx + c2xsinβx)

10.3.2 Nonhomogenous equations

To solve such equations, solve the complementary
equation, then solve the particular equation, add
them.

ay′′+ by′+ cy = G(x)

Complementary equation:

ay′′+ by′+ cy = 0

The solution y(x) of a nonhomogenous equation can
be written as

y(x) = yp(x) + yc(x)

where yp is the particular solution and yc the comple-
mentary.
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4 Example . . .

y′′+ y′−2y = x2

yc = c1ex + c2e−2x

Now guess what yp could look like:

yp(x) = Ax2 + Bx +C

Differentiate this equation and substitute it into the
original equation:

(2A) + (2Ax + B)−2(Ax2 + Bx +C) = x2

[. . .]
−2A = 1 2A−2B = 0 2A + B−2C = 0

⇒ A = −
1
2

B = −
1
2

C = −
3
4

y(x) = yc(x) + yp(x) = . . .

Note The solution yp must never equal the solution yc.
In that case, a x has to be added to the solution. For
example:

y′′−3y′+ 2y = 2x + e2x + e−2x

yc = c1ex + c2e2x

yp = ax + b + cxe2x + de2x

The particular solution yp must be “linearly indepen-
dent” of yc.

Attempts for solving nonhomogenous
equations

Note If you have an equation like

ay′′+ by′+ cy = G(x) + H(x)

the solution may be acquired by

ay′′+ by′+ cy = G(x)
ay′′+ by′+ cy = H(x)

then y(x) = yp1 + yp2.

ay′′+ by′+ cy = G(x)

G(x) yp(x)

const A
xn Axn + Bxn−1+. . .+C = yp(x)
enx Aenx

sin x Acos x + Bsin x
xcosnx (Ax + B)cosnx + (Cx + D) sinnx

As is the case with the last row, the solutions should
be combined in order to find a solution.

10.3.3 Initial value problems

Those are especially easy, all you have to do is plug in
the given values into your solution and solve for the c1
and c2.

Just to be sure. . .

y( 0︸︷︷︸
x

) = 1︸︷︷︸
y

11 Complex numbers

Complex numbers suck, but you have to know them.

z = α︸︷︷︸
real

+ βi︸︷︷︸
complex

The main property of i is i2 = −1. Therefore:
√

i =√
−1 But also: (−1)2 = −1⇒

√
−i =

√
−1 In general:

√
−c =

√
ci

Fundamental Theorem of Algebra

If you want to show off, this was proofed by Gauss!

anxn + an−1xn−1 + . . .+ a1x + a0 = 0

does always have a solution among the complex num-
bers.

Basic rules

(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi)− (c + di) = (a− c) + (b−d)i

(a + bi)(c + di) = a(c + di) + (bi)(c + di)

Conjugates

Complex number: z = a + bi

Conjugate: z = a−bi

z + w = z + w zw = z ·w zn = zn
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Division of complex numberx

To divide complex numbers, multiply them with their
conjugate denominator.

−1 + 3i
2 + 5i︸︷︷︸

z

=
−1 + 3i
2 + 5i

·

z︷︸︸︷
2−5i
2−5i︸︷︷︸

z

=
13 + 11i
22 + 52 =

13
29

+
11
29

i

Modulus

Distance from the origin in the complex number dia-
gram.

|z| =
√

a2 + b2

zz = |z|2

z
w

=
zw

|w|2

Polar form

Expresses a complex number by means of the complex
number diagram.

a = r cosθ, b = r sinθ
z = a + bi

z = r(cosθ+ isinθ)

Where r = |z| =
√

a2 + b2 and θ is the “argument” of z,
θ = arg(z) = arctan(b/a).

z1z2 = r1r2 [cos(θ1 + θ2) + isin(θ1 + θ2)]
z1

z2
=

r1

r2
[cos(θ1− θ2) + isin(θ1− θ2)] ,z2 , 0

z−1 =
1
z

=
1
r

(cosθ− isinθ)

De Moivre’s Theorem

zn = [r(cosθ+ isinθ)]n

= rn(cosnθ+ isinnθ)

Roots of complex numbers

Roots of complex numbers suck especially. For the nth

root, you need n iterations. . .

wk = r1/n
[
cos

(
θ+ 2kπ

n

)
+ isin

(
θ+ 2kπ

n

)]
,

where k = 0,1, . . . ,n−1.

Complex exponentials

ez = ea+bi = eaebi = ea(cosb + isinb)

Show off note:

eiπ + 1 = 0

This formula comprises the very most important math-
ematical numbers. Also note:

[r(cosθ+ isinθ)]n =
(
reiθ

)n
= rneinθ

Trick for complex numbers with high exponentials:

z10 = (z2)5

A Recurring Derivatives

And hence integrals as well. . .

d
dx

ax = ax lna

d
dx

(logax) =
1

x lna
d

dx
tan x =

1
cos2 x

d
dx

arcsin x =
1

√
1− x2

d
dx

arccos x = −
1

√
1− x2

d
dx

arctan x =
1

1 + x2

d
dx

x ln |cos x| = tan x

d
dx

1
2

ln(1 + x2) = ln(1 + x2)
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