Calculus - Period 1

Differentiation and Integration

Chain Rule:

$$(f(g(x)))' = f'(g(x))g'(x)$$
(1)

Implicit Differentiation:

When applying implicit differentiation for a function y of x, every term with a y should, after normal differentiation (often involving the product rule), be multiplied by y' because of the chain rule. After that, the equation should be solved for y'.

Lineair Approximations:

$$f(x) - f(a) \approx f'(a)(x - a) \tag{2}$$

Mean Value Theorem:

If f is continuous on [a, b] and differentiable on (a, b), then there is a c in (a, b) such that:

$$f(b) - f(a) = f'(c)(b - a)$$
 (3)

Integration:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) \tag{4}$$

Where F is any antiderivative/primitive function of f, that is, F' = f.

Substitution Rule:

If u = g(x) then:

$$\int f(g(x))g'(x)dx = \int f(u)du \tag{5}$$

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du \qquad (6)$$

Integration By Parts:

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx \quad (7)$$
$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx \quad (8)$$

Improper Integrals:

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \tag{9}$$

This function is convergent for p > 1 and divergent for $p \le 1$.

Comparison Theorem:

If $f(x) \ge g(x) \ge 0$ for $x \ge a$ then:

- If $\int_a^{\infty} f(x) dx$ is convergent, then $\int_a^{\infty} g(x) dx$ is convergent.
- If $\int_a^{\infty} g(x) dx$ is divergent, then $\int_a^{\infty} f(x) dx$ is divergent.

Complex Numbers

Complex Number Notations:

$$i^2 = -1$$
 (10)

$$z = a + bi = r(\cos\theta + i\sin\theta) = re^{i\theta}$$
(11)

$$a = r\cos\theta$$
 and $b = r\sin\theta$ (12)

$$|z| = r = \sqrt{a^2 + b^2}$$

$$\theta = \arctan \frac{b}{a} \quad \text{or} \quad \theta = \arctan \frac{b}{a} + \pi$$

$$e^{i\theta} = \cos \theta + i \sin \theta$$
(13)
(14)

Complex Number Calculation:

$$(a+bi) + (c+di) = (a+c) + (b+d)i (a+bi)(c+di) = (ac-bd) + (ad+bc)i$$
(15)

$$z_{1}z_{2} = r_{1}r_{2}(\cos(\theta_{1} + \theta_{2}) + i\sin(\theta_{1} + \theta_{2}))$$

$$r_{1}e^{i\theta_{1}} \cdot r_{2}e^{i\theta_{2}} = r_{1}r_{2}e^{i(\theta_{1} + \theta_{2})}$$
(16)

Complex Conjugates:

$$z = a + bi \quad \Rightarrow \quad \overline{z} = a - bi \tag{17}$$

 $\overline{z+w} = \overline{z} + \overline{w}$ $\overline{zw} = \overline{z} \overline{w}$ $\overline{z^n} = \overline{z^n}$ $z\overline{z} = |z|^2$ (18)

Differential Equations

Separable Differential Equations:

Form :
$$\frac{dy}{dx} = y' = P(x)Q(y)$$

Solution:
$$\int \frac{1}{Q(y)} dy = \int P(x) dx$$
 (19)

First-Order Differential Equations

Form :
$$y' + P(x)y = Q(x)$$

Let $\Upsilon(x)$ be any integral of P(x). Solution is:

$$y = e^{-\Upsilon(x)} \left(\int e^{\Upsilon(x)} Q(x) dx + C \right)$$
(20)

Homogeneous second-order linear differential equations:

Form : ay'' + by' + cy = 0

• $b^2 - 4ac > 0$: Define r such that $ar^2 + br + c = 0$.

Solution:
$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$
 (21)

• $b^2 - 4ac = 0$: Define r such that $ar^2 + br + c = 0$.

Solution:
$$y = c_1 e^{rx} + c_2 x e^{rx}$$
 (22)

• $b^2 - 4ac < 0$: Define $\alpha = -\frac{b}{2a}$ and $\beta = \frac{\sqrt{4ac-b^2}}{2a}$. Solution:

$$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x) \tag{23}$$

Nonhomogeneous second-order linear differential equations:

Form :
$$ay'' + by' + cy = P(x)$$

First solve $ay''_c + by'_c + cy_c = 0$. Then use an auxiliary equation to find one solution y_p for the given differential equation. The solution is:

$$y = y_c + y_p \tag{24}$$