Lecture Note #2

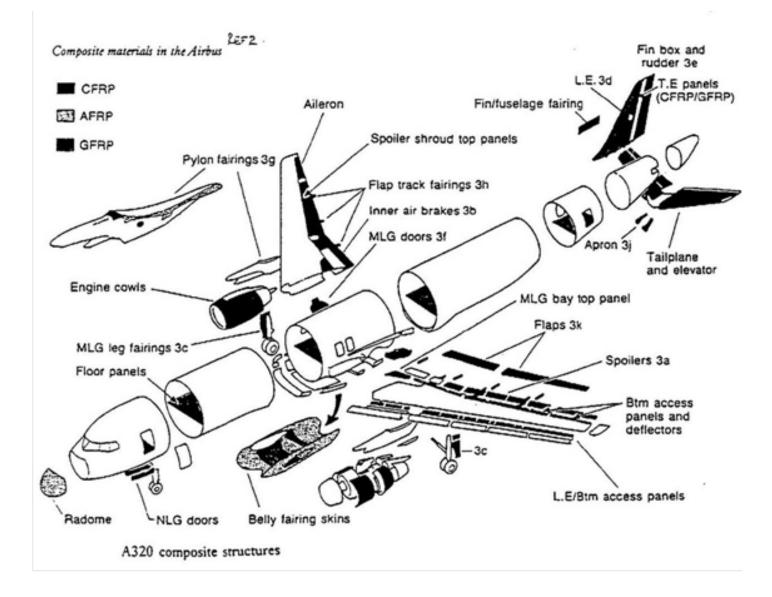
2019 1st Semester Short Course

IIT Kharagpur

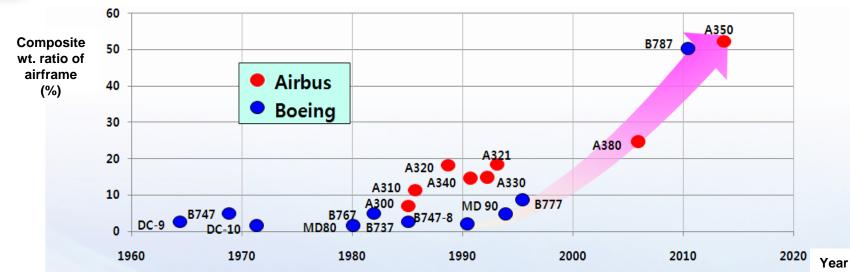
Design of Aircraft Components using Composite Materials

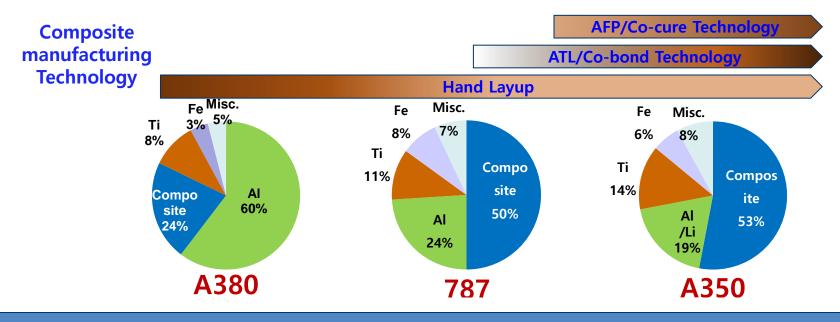
Indian Institute of Technology-Kharagpur Department of Aerospace Engineering Professor Changduk Kong

Lecture Note


An Introduction to Composite Materials (Part 1)

Indian Institute of Technology-Kharagpur Department of Aerospace Engineering Professor Changduk Kong

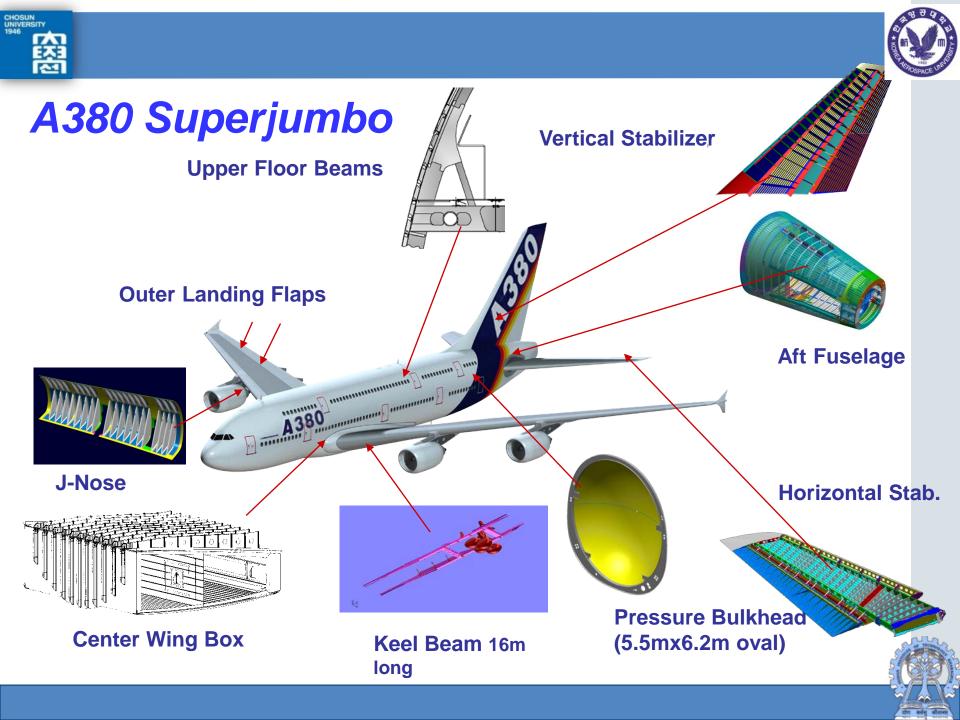


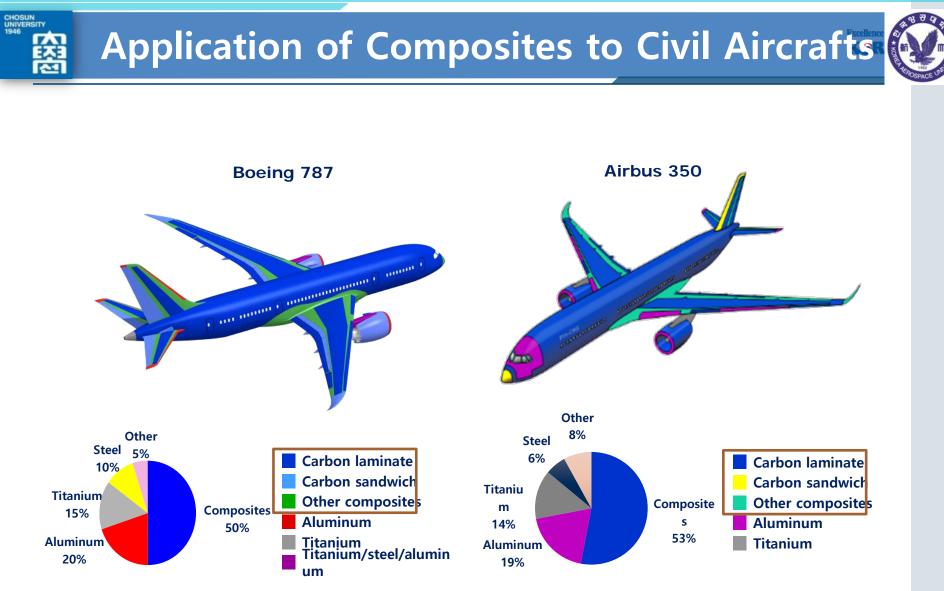


Application of Composites to Civil Aircraft

CHOSUN UNIVERSITY 1946

Airbus A340 - 18% CFRP





Ultra-long-range aircraft

Composite keel beams and wing leading edges

Composite Wt. ratio of B787 Airframe : 50% (Volume ratio: 80%) Wt. Reduction : 10~ 20% (12~ 24 ton)

- MATIERIALS
- MANUFACTURE
- BEHAVIOUR (Static, Long Term, Impact)
- INSPECTION, REPAIR, JOINTS

MATERIALS

Classification

Composite Materials

- Two or more constituents
- Combined for better properties

Examples:

Natural: wood, bone Micro: alloys, mixed plastics Macro: distinct particle or fibre reinforced Plastics/metals/carbon/ceramic

New technology of "macro-composites" as Advanced Composite Materials

The Incentives:

Lighter, Stronger, Fatigue resistant, Corrosion resistant, Fatigue resistant, Optimised directional properties Fewer components, Fewer processes ...

Basic Components of macro composites: Reinforcement, Matrix, Interface

- Continuous medium providing:
- Binding
- Load transfer
- Surface Protection
- Toughness
- Wear resistance
- Chemical resistance

Types of matrixes:

- Plastics (or Resins) Thermoset: Epoxies, Polyester (Operating temperature: up to $150^{\circ}C$) Thermoplastic: PEEK, PP (Operating temperature: up to $300^{\circ}C$)
- MetalsAl Alloy (Operating temperature: up to $400^{\circ}C$)
- Ceramics (Operating temperature: up to $1000^{\circ}C$)

 $Al_2O_3,\,SiC,\,MgO,\,Si_3N_4\,$..

Thermoset plastics

- Cross-linked
- Can not be re-softened-one shot cure
- Cure = polymerization by:

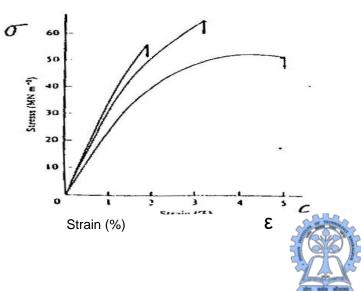
Catalyst

```
Heat ( 125,175°C )
```

Pressure 100 psi (Typically $0.75 \sim 1.5 MPa$)

Chemical reaction!			
- exotherm			
	control!		
- volatiles	J		

• Shelf life 1 year @ $-18^{\circ}C$


Examples of thermoset plastics used of composite matrixes

Polyesters	Operating temperature limit	150°C
Epoxies	Operating temperature limit	150,250°C
Polyimides	Operating temperature limit	300° <i>C</i>
Phenolics	Operating temperature limit	300°C

Limiting Performance

- Toughness (epoxies tend to e relatively brittle)
- Moisture (epoxies can absorb up to 2% weight of water which tends to plasticize i.e. soften and degrade the material)
- Temperature (typically up to a maximum temperature of 150 DegC) Stress Strain behaviour

(tends to be non-linear with low strengths and failure strains from 1 to 4%)

Thermoplastic

- Not cross-linked
 Only entanglements + Van der Wals
- Can be re-softened Multi-stage processing
- No chemical reaction just melt + solidify cooling rate → crystallinity
- Healing
- Re-use of scrap
- Infinite shelf life
- High processing temperatures and pressures:

300-400 °C 200-400 psi ancillary materials!

Examples of thermoplastics used for composite matrixes

Operating temperature

- PAK's PEEK (ICI, APC2) Tg 145 °C
- PAS's: PPS (Phillips, Avtel) Tg 90 °C
- Polysulphone (Amoco, Radel) Tg 215 °C
- PEI's: Polyetherimide (GE, Ultem) Tg 216 °C $(T_g = Glass Transition Temperature \rightarrow T_{operation})$

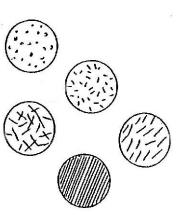
Properties

- General mechanical properties \rightarrow lower than Thermosets
- Tougher
- Negligible moisture < 0.2%
- \rightarrow Impact resistance \rightarrow Moisture resistance
- Good outgassing, radiation, cryogenic performance \rightarrow Space applications

Limiting Performance:

- Difficult to process (high temperatures and pressures)
- Expensive material and ancillaries

Reinforcement

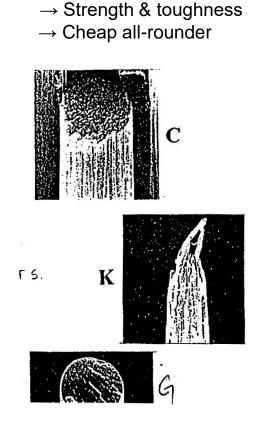

Discontinuous medium providing:

- High strength
- High stiffness

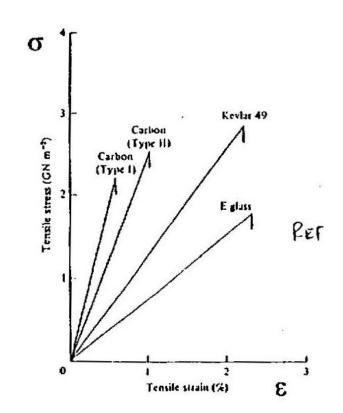
Types of reinforcements:

- Particulate
- Fibrous
 - Short
 - Long
 - Continuous Random
 - Aligned

E.g.: Carbon HS, HM Glass E, S Polymeric Kevlar Hybrids Metal Boron Ceramic SiC

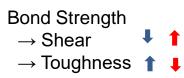


Common Fibres


→ Strength & stiffness

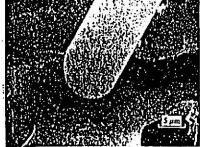
Carbon (Graphite) High strength High modulus Intermediate modulus

Kevlar Glass Hybrids

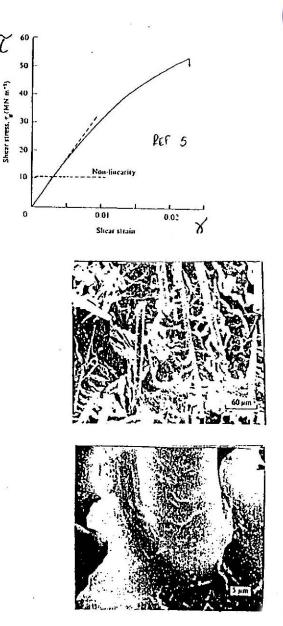

Graphite : heat treated more than 1700°C
 Carbon : heat treated less than 1700°C

CRITICAL

Sizing agent


- Fibre protection \rightarrow
- Wetting
- act as Coupling Agent \rightarrow

Fibre-matrix


Non-linear response

2

untreated

Treated by sizing agent

Terminology

Materials

Fibres Tows e.g. 5 or 10k filaments

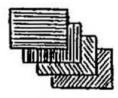
Matrix

Interface

Cores Honeycomb, foam, syntactic

Lamina Ply or Layer UD tape or Woven fabric

Laminate


UD: all 0° layers Angle-ply: $\pm \theta$, usually $\pm 45^{\circ}$ Cross-ply: 0, 90° Quasi-isotropic: 0, ± 45 , 90°

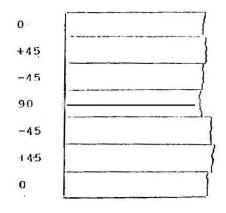
Woven weave and weft patterns

Material Properties

Homogenous isotopic

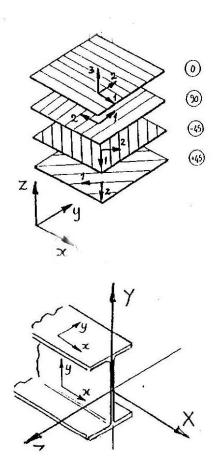
Heterogeneous

Anisotropic Composites Orthotropic



Laminate Codes

e.g. | 0, ±45, 90° |_s



Axes Systems

Lamina Material Axes 1 2 3

Laminate Plate axes x y z

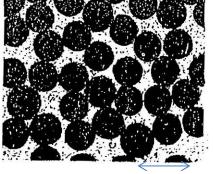
Component Structural axes X, Y, Z

Fibre Weight Fraction $w_f = \frac{W_f}{W_f + W_m}$ Fibre Volume Fraction $v_f = \frac{V_f}{V_f + V_m}$ Voidage (Porosity) $v_c = v_f + v_m + v_V = I - (v_f + V_m)$

Fibre Packing

 $v_{f} = \frac{V_{f}}{V_{f} + V_{m}}$ $v_{c} = v_{f} + v_{m} + v_{v} = 1$ $v_{V} = 1 - (v_{f} + v_{m})$ $(V_{f} = W_{f}/\rho_{f} \& V_{m} = W_{m}/\rho_{m})$ $(Approximately : v_{m} = 1 - v_{f})$

E.g. for UD lamina

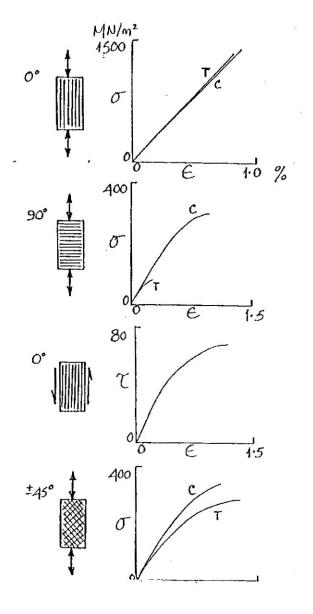

Theoretical

Square array: 75% fibre vol. fraction

Hexagonal array: 90% fibre Vol. fraction

20µm

Actual vol. fraction = 60-70%



Overall response

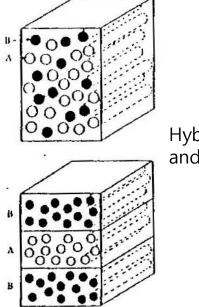
Fibre dominated – linear

Matrix dominated – non linear

Interface dominated - non linear

^{조선대학교} COMPARISON OF PROPERTIES

PROPERTY	UNIT	FIBRES		RESINS	COMPOSITES (UD)	METALS
		C(HM) C(HS) G(E)	K(49)	Epoxy Pestr	Vf 0.6 C/Ep G/Ep K/Ep (HM) (E) (49)	Steel Ally low
Ε ₀ Ε ₉₀	GN/m2 GN/m2	390 250 76 12 20	125	4.5 3	140 40 84 9 8 6	200 72
G	GN/m2				4.8 4 2.1	
TS ₀ TS ₉₀	MN/m2 MN/m2	2200 2800 2000	3000	50 50	1400 800 1450 40 36 39	1500 530
CS ₀ CS ₉₀	MN/m2 MN/m2			150 150	-1250 -600 -300 -200 -200 -150	
EL ₀ EL ₉₀	% %	0.5 1.0 2.0	2.5	1 1.5	0.8 1.8 2.1 0.6 0.45 0.6	20 11
Density	Mg/m3	1.95 1.75 2.56	1.45	1.3 1.3	1.6 2.0 1.4	7.8 2.8



Composite Material Types and Forms

Material Type

Epoxy Polyimide + C, K, G / hybrid *PEEK*

Hybrid with A and B fibers

Material Form

1. Wet lay-up form

"Dry" tows, UD/stitched or Woven fabrics Separate "wet" matrix resin

Thermoset resin poured/squeezed into fibre forms

(Thermoplastic resin melted in)

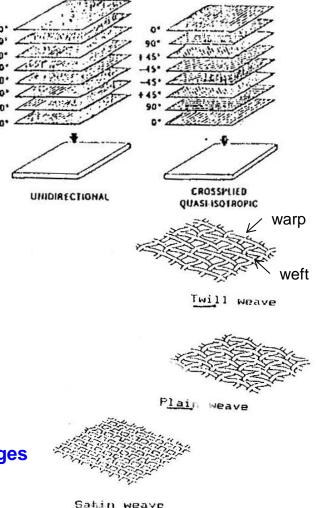
2.Prepreg form

Pre-impregnated tows, UD tapes or woven fabrics i.e. with matrix resin already included

CHOSUN UNIVERSITY 1946 조선대학교

Laminates

Stacked Orientated Layers

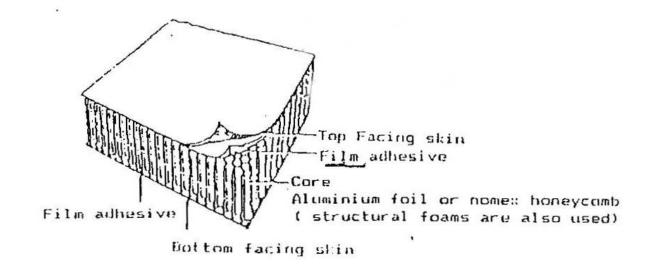

- 1. Made from UD tapes
- Controlled directional props
- Unkinked fibres
- High strength, stiffness
- Compression stability
- Flat, single curvature i.e. "low drape"
- Highly loaded

Applications: spars, wing skins, stiffeners

2. Made from Woven fabrics (or stitched tapes)

- Weave, weft control
- Kinked fibres
- Lower strength, stiffness esp. compression
- Good impact resistance
- Complex curvature i.e. drapable
- Moderately loaded

Applications: cowlings, nacelles, flaps, leading edges

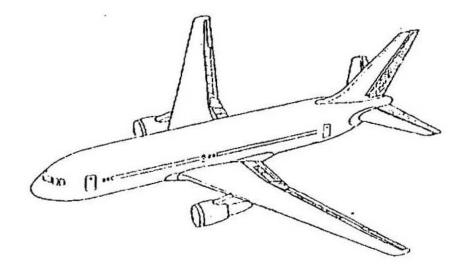


Sandwich Panels

- Using cores of metal or Nomex honeycomb or foams
- High bending stiffness
- Lightweight
- Moisture ingress!
- E.g. Applications: flaps, flooring, stiffeners

Choice of Material Type and Form

- Type of Structure
- Operational loading
- Operational temperature


Type of Structure

Panels

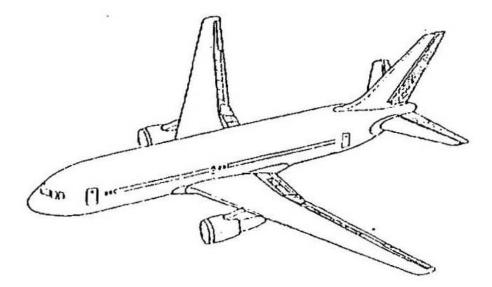
Flat Single curvature Double curvature Stiffened Discrete e.g. stringers Sandwich e.g. honeycomb or foam

Continuous sections

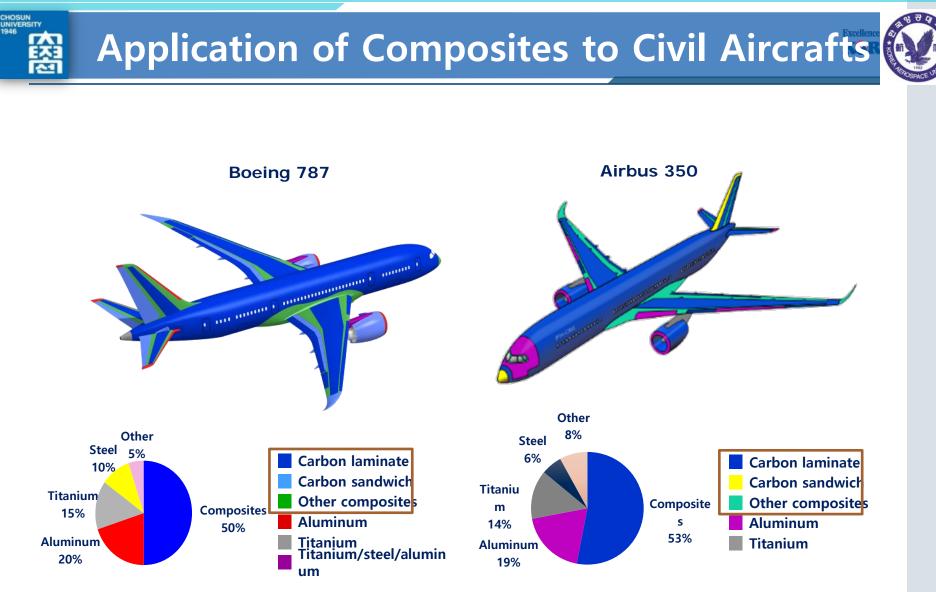
Open L T Z U Closed O Complex #

Operational Loading

High


Moderate

Low


Direct Loads - 0° fibres Shear - $\pm 45^{\circ}$ fibres Transverse - 90° fibres

Operational Temperature

Airframe Subsonic: $-30 \sim 60^{\circ} C$ Supersonic: $-30 \sim 150^{\circ} C$ Engine Outer Inner: $300 \sim 400^{\circ} C$ Hot: $1000^{\circ} C$

Composite Wt. ratio of B787 Airframe : 50% (Volume ratio: 80%) Wt. Reduction : 10~ 20% (12~ 24 ton)

MANUFACTURE

Many parameters \rightarrow product quality

Basic Processes:

Lay-up

Heat and Pressure

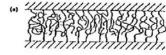
- Thermosets : heat-reaction-cure cycle \rightarrow typically 4~8 hours 'one shot'
- Thermoplastics : heat-melt-solidify cycle

Impregnation

- Matrix \rightarrow fibre tows

Consolidation

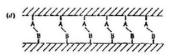
- Lamina : lamina
- Laminate compaction



R B B C A

•Absorption and wetting

●Inter-diffusion (A	Autohesion)
---------------------	-------------


and the base

- Thermoplastic resin

•Electrostatic attraction

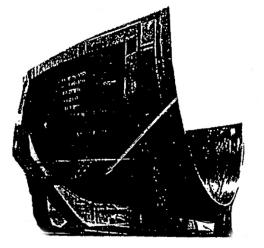
(b) *L______*

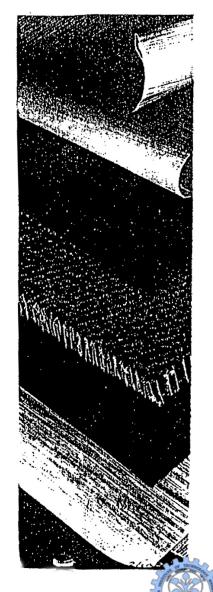
Chemical bonding

- Thermoset resin

Manufacturing Techniques

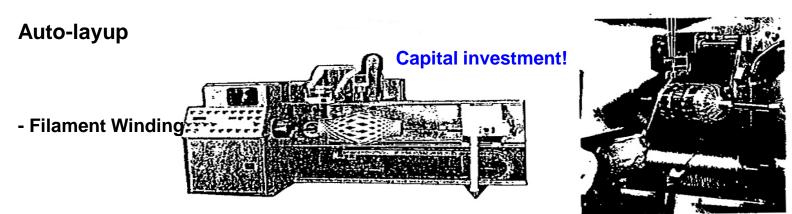
Material form! / Structural form!

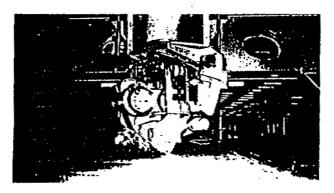

Hand lay-up

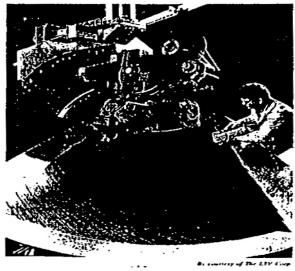

Labour intensive

Tooling

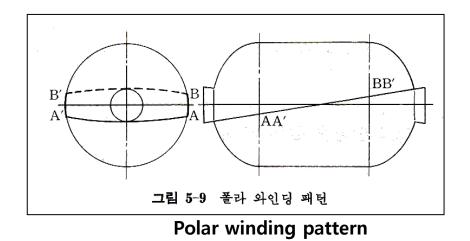
For low CTE (Coeff. of Thermal Expansion)

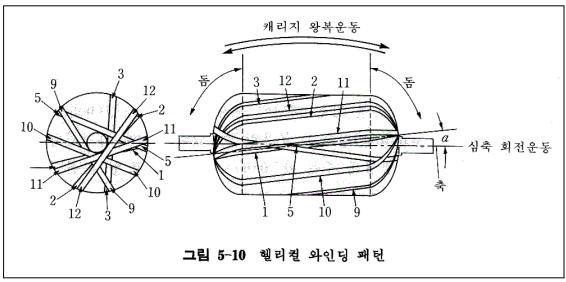

CFRP tooling

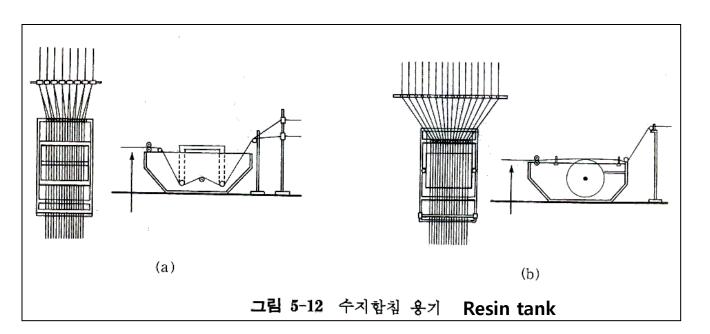


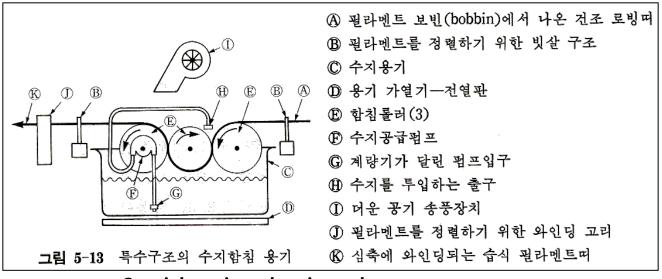


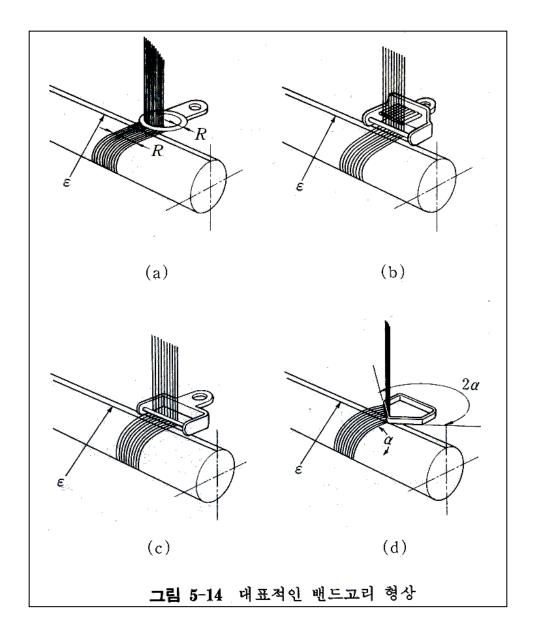
- Tape Laying




B) Curved contoured surface 4 Fig. 4.3.3 A Contoured Tape Laying Machines (cont'd)




Helical winding pattern


Special equipped resin tank

Winding tension is controlled by band holder

Filament winding stress analysis

1) Netting (or Helical) Winding Analysis Method

〔기 호〕

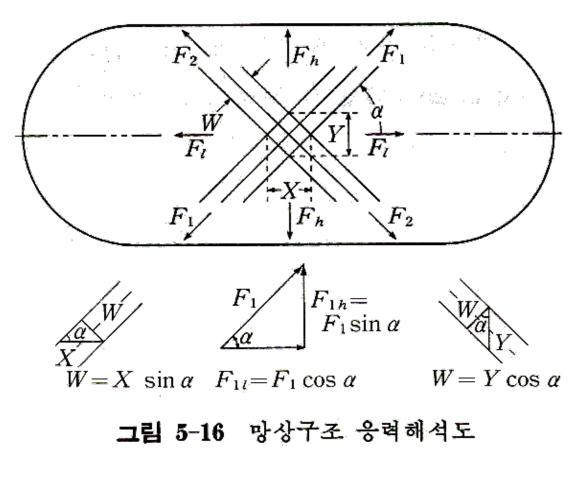
F: 섬유방향 하중Fiber directional load Y: 원주방향 길이Circumferential length $F_h: 원주방향 하중$ Circumferential load S: 섬유방향 응력Fiber directional stress $F_i: 축방향 하중$ axial directional load $S_h: 원주방향 응력$ Circumferential stress $\alpha: 와인딩 각도$ Winding angle $S_i: 축방향 응력$ axial directional stresst: 두께thickness $S_f: 섬유가 받는 응력$ Fiber stress

X: 축방향 길이axial directional load W : 밴드폭 Band width

여

$$F_h = 2F \sin \alpha$$

 $S_h = \frac{F_h}{Xt} = \frac{2F}{Xt} \sin \alpha$
여기서, $S_f = \frac{2F}{Wt}$, $W = X \sin \alpha$ 이므로
 $S_h = S_f \sin^2 \alpha$
이다. 또한, $F_l = 2F \cos \alpha$ 이므로


$$S_{l} = \frac{F_{l}}{Yt} = \frac{2F}{Yt} \cos \alpha$$

이다. 여기서,
$$W = Y \cos \alpha$$
, $S_f = \frac{2F}{Wt}$ 이므로 다음과 같이 된다.

 $S_l = S_f \cos^2 \alpha$

Hoop stress S_h = 2x axial stress S_l

$$\frac{S_h}{S_l} = \frac{S_f \sin^2 \alpha}{S_f \cos^2 \alpha} = \tan^2 \alpha = 2$$
$$\tan \alpha = \sqrt{2}$$
$$\alpha = 54.75^\circ$$

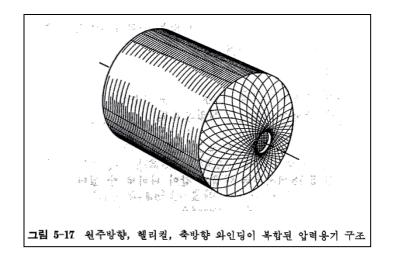
- This is optimal winding angle for long pipe loaded by internal pressure!

\star

2) Compound Winding Stress Analysis Method

[Assumption]

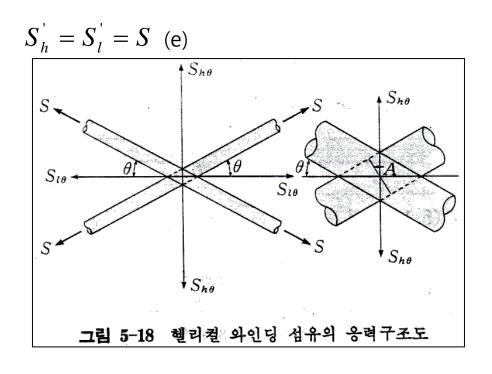
- i) All fibers have same tension force
- ii) No bending load
- iii) Pressure vessel: axisymmetric
- IV) Relatively thin to diameter
- V) No shear stress between fibers
- VI) Compound winding using hoop, helical and axial winding
- VII) All fiber is continuous



If all fibers have same stress S;

$$S_{h} = \frac{PD}{2t} \quad (a) \qquad S_{h} = \frac{S_{h}'t_{h}}{t} + \frac{S_{h\theta}t_{\theta}}{t} \quad (c)$$
$$S_{l} = \frac{PD}{4t} \quad (b) \qquad S_{l} = \frac{S_{l}'t_{l}}{t} + \frac{S_{l\theta}t_{\theta}}{t} \quad (d)$$

t: Total winding thickness



- S_{μ} : hoop stress of hoop winding fiber
- S_1 : axial stress of axial winding
- $S_{_{h heta}}^{^{-}}$: hoop stress of helical winding fiber
- $S_{1\theta}^{m}$ axial stress of helical winding fiber
- $t_{t_{i}}$: hoop winding fiber thickness
- t_{θ}^{n} : helical winding fiber thickness
- t_1 : axial winding fiber thickness

$$S_{h\theta} = S \sin^2 \theta \quad \text{(f)}$$
$$S_{I\theta} = S \cos^2 \theta \quad \text{(g)}$$

Substitute (f, g) for (c, d)

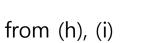
$$S_h = \frac{S \cdot t_h}{t} + \frac{S \sin^2 \theta t_\theta}{t} \tag{(h)}$$

*using netting winding results

(1)

$$S_{l} = \frac{S \cdot t_{l}}{t} + \frac{S \cos^{2} \theta t_{\theta}}{t}$$
(i)

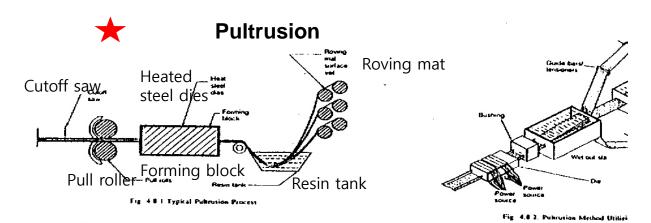
$$S_h + S_l = S$$
^(j)

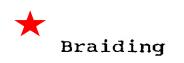

$$S_h = 2 S_l = \frac{PD}{2t} \quad \text{from (j), (k)}$$

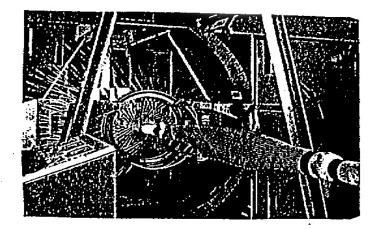
$$t = \frac{3PD}{4S}$$

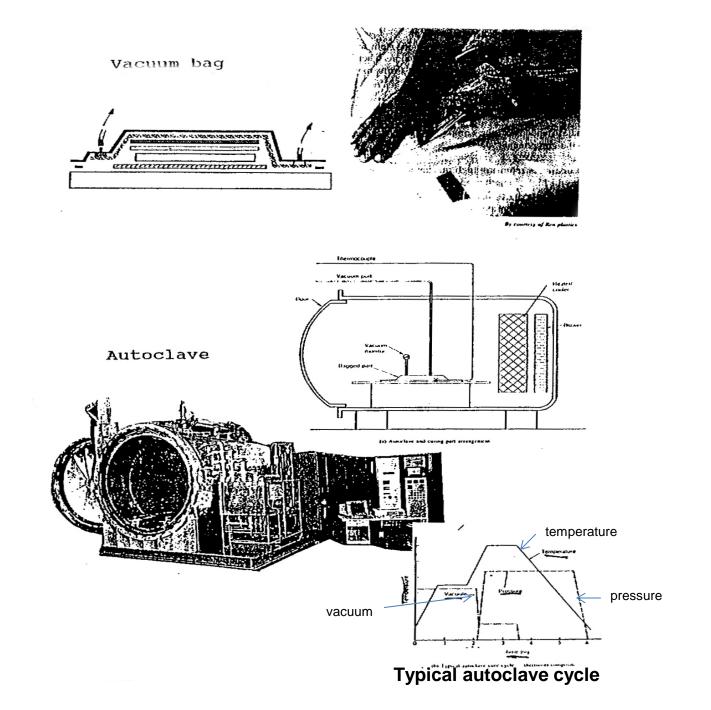
*Total thickness is independent of winding angle and only function of pressure, diameter and fiber's strength!

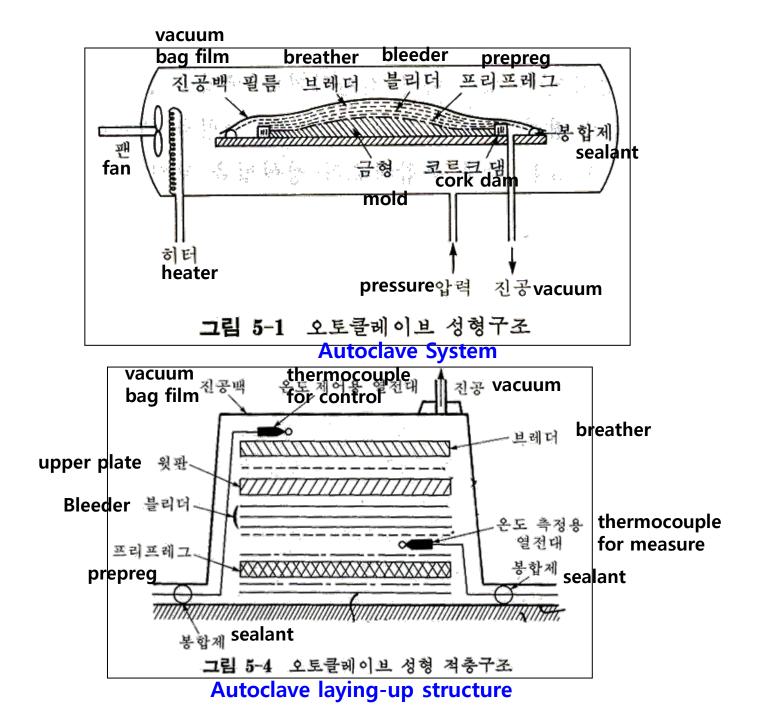
$$St_{h} + St_{\theta} \sin^{2} \theta = 2 St_{l} + 2 St_{\theta} \cos^{2} \theta$$
$$t_{\theta} = \frac{2 t_{l} - t_{h}}{\sin^{2} \theta - 2 \cos^{2} \theta}$$
$$= \frac{2 t_{l} - t_{h}}{1 - 3 \cos^{2} \theta} \quad (m)$$
$$t = t_{\theta} + t_{h} + t_{l} \quad (n)$$

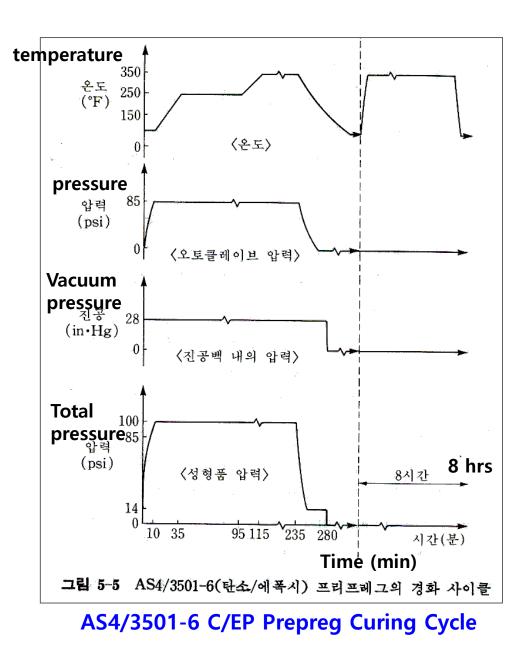

$$t_{I} = \frac{t}{3} - t_{\theta} \cos^{2} \theta$$
$$t_{h} = \frac{2t}{3} - t_{\theta} \sin^{2} \theta$$


* If helical winding thickness and angle are given, hoop and axial thicknesses can be decided! .



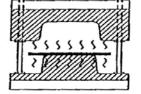


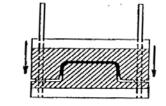


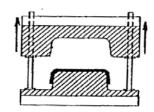


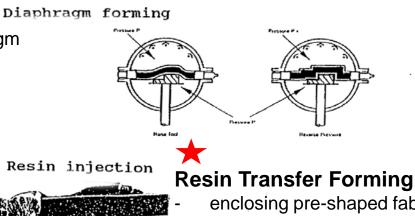
Curing Cycle:

- Thermoset: 125-175 C, 0.5-1Mpa, 4-8 hrs
- Thermoplastic: 300-400 C, 1-4 MPa, 1-30 min




Closed Mould


- Male + female matched metal molds
- Or one metal mold+ one flexible membrane mold
- Heat and pressure
- Use mainly for thermoplastic
- composites



- Superplastic deformation by Dia Al alloy and polyimide film diaphragm under temp. and press. to form composites onto a mold tool
- Thermoplastic prepreg composites

enclosing pre-shaped fabric (preform) within a mold tool and then transferring resin into the mold with heat and press. to consolidate and cure.

By COULIGST OF Dowly Porol

Comparison of Thermoset and Thermoplastic Manufacture

Thermoset composites:

lay-up then cure/consolidate

E.g.:

- Hand or "auto" lay-up
- vac bag/ autoclave cure

Thermoplastic composites:

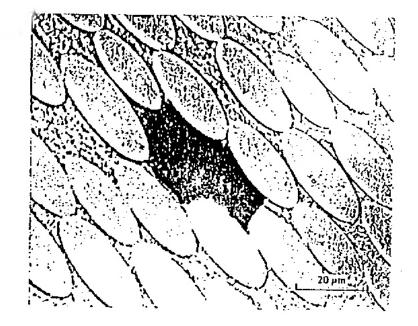
Lay-up and melt/consolidate in one

E.g.:

 Dynamic "auto" process techniques But yet to be developed for production

Manufacturing Defects

Voids (Porosity)


- Along fibres or between layers
- Incomplete wet-out
- Volatiles

Gross defects

- Delamination between layers
- Surface contamination
- Poor consolidation

Clean room conditions!

Operator training!

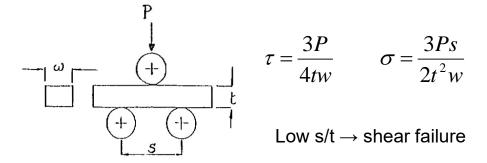
Non-destructive:

- Shop floor inspection \rightarrow Surface flaws, shape, thickness
- Ultrasonic scanning \rightarrow Po
 - \rightarrow Porosity, delamination

→ Fibre alignment, cracks Radio opaque dyes!

- X-ray
- Thermal imaging

- → Flaws, damage, honeycomb disbonds (glass OK, carbon not OK)
- Vibrational response \rightarrow Stiffness, layup
- Acoustic emission / proof test \rightarrow Screening


Destructive:

조선대학교

 $\textbf{Microscopic} \rightarrow \text{Voids}, \text{ delamination}, \text{fibre content}$

Density, Acid digest, burn-off \rightarrow Fibre/ resin content

Short beam shear \rightarrow Inter-laminar strength

Tensile, compressive, shear, flexure \rightarrow Strength, stiffness, fail modes

STATIC BEHAVIOUR

At microscopic scale Fibre, matrix, interface constituent Properties are considered

"Micromechanics"

At Macroscopic scale Lamina and laminate properties are considered

"Macromechanics"

Differential properties:

	Fibre dominated	Matrix dominated
Mechanical	high stiffness	low stiffness
Thermal	small-ve α	larger+ve α
Moisture	no charge	Swelling and shrinkage

Micro-Mechanics

Lamina Stress Strain Behaviour

Assumptions:

- Linear elastic response
- Perfect fibre-matrix bonding
- Neglecting Poisson strain

"Rules of Mixtures"

Longitudinal modulus

· [[......] :] --

R.o.M:
$$E_1 = E_f V_f + E_m V_m$$

Transverse Modulus

$$E_2$$

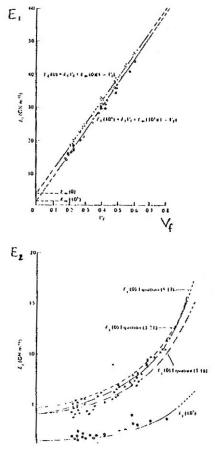
R.o.M:

Parallel model

E₁

Prediction of lamina elastic properties

from fibre and matrix properties

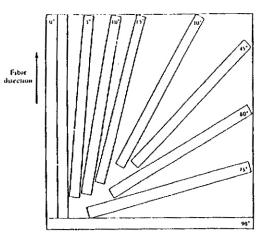

Series model

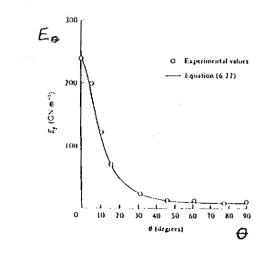
Use effective matrix modulus

to account for poisson:

$$E_m' = \frac{E_m}{1 - v_m^2}$$

 $E_2 = \frac{E_f E_m}{E_f V_m + E_m V_f}$

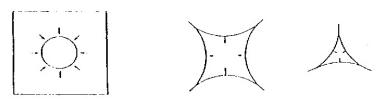




Orientation dependence of Modulus

Thermal Expansion coefficients:

Longitudinal


"R.o.M"
$$\alpha_1 = \frac{E_f \alpha_f V_f + E_m \alpha_m V_m}{E_f V_f + E_m V_m}$$

Transverse

"R.o.M"
$$\alpha_2 = (1 + v_m) \alpha_m V_m + (1 + v_f) \alpha_m V_f - \alpha_1 (v_f V_f + v_m V_m)$$

Note:

- Across fibre : Matrix contraction

Macromechanics

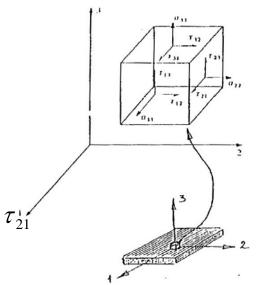
Lamina Stress strain Behaviour

Assumptions:

- Average apparent properties
- Linear elastic response:

9 stress-strain components:

Linear elastic stress-strain relations:


$$\sigma = E\varepsilon, \ \tau = G\gamma$$

Matrix Algebra

 $\{\sigma_1\} = [C]\{\varepsilon_1\}$ $\{\varepsilon_1\} = [S]\{\sigma_1\}$

Where C = stiffness matrix!S = Compliance matrix! = [C]⁻¹

Constitutive Stress-Strain relations

Fully anisotropic

$$\begin{cases} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \tau_{23} \\ \tau_{12} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{pmatrix}_{36imc}$$

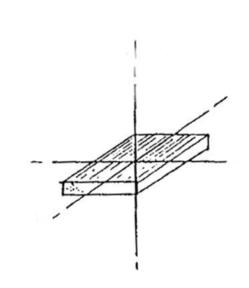
independent material constalants

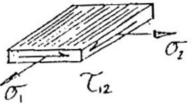
 $C_{ij} = C_{ji}$

Independant of the order of loading (reciprocal behaviour)

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{12} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{pmatrix}_{21imc}$$

3 mutually perpendicular planes of symmetry (orthotropic)


$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{12} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{21} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{bmatrix}_{9imc}$$


Plane stress

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{21} & C_{22} & 0 \\ 0 & 0 & C_{66} \end{bmatrix} \begin{cases} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \end{cases}_{4 imc}$$

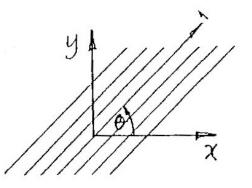
Reduced stiffness matrix

$$\begin{cases} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{cases} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} \end{cases}_{4 imc}$$
$$\{\sigma\} = [Q]\{\varepsilon\}$$

"Generally orthotropic"

Generally orthotropic constitutive relation

Starting with:


$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{cases} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \end{cases}$$

Where [Q] =Reduced stiffness matrix in 1-2 material axes

Transform by trigonometric transformation to produce general structural axis relations at angle θ

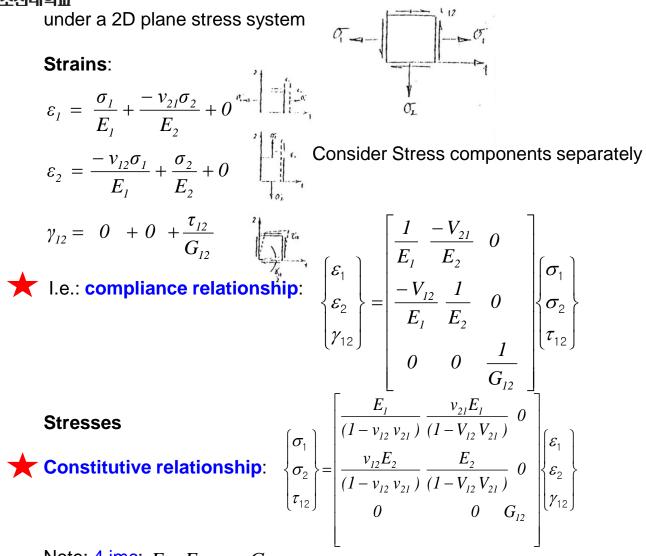
i.e.:
$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases}$$

Where $\left| \overline{Q} \right|$ is the "Transformed reduced stiffness matrix"

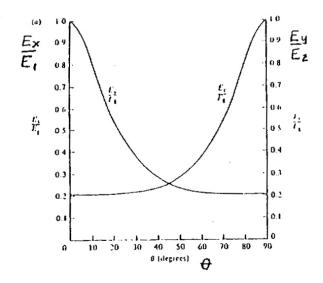
In general x-y plate axes

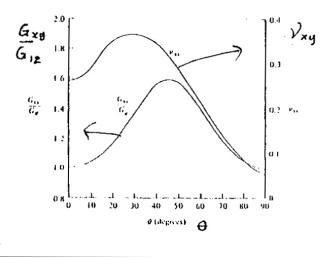
Calculated from
$$\begin{bmatrix} \overline{Q} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}^{-1} \begin{bmatrix} Q \end{bmatrix} \begin{bmatrix} T \end{bmatrix}^{-T}$$

where $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} m^2 & n^2 & 2mn \\ n^2 & m^2 & -2mn \\ -mn & mn & m^2 - n^2 \end{bmatrix}$ And $m = \cos \theta$ $n = \sin \theta$

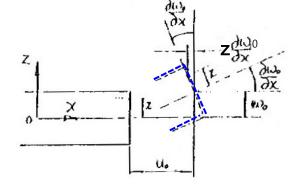

i.e. simply geometric transformation

transformed, e.g. to the general x-y plate axes. This results in **a fully populated matrix and shear coupling** so that the matrix becomes fully populated, usually written as . However, there are still only 4 independent material constants required to describe the stress strain behaviour.


Note: 4 imc: $E_1 E_2 v_{12} G_{12}$ Note $v_{21} \neq v_{12}$ But reciprocal relation $-v_{12}E_2 = v_{21}E_1$

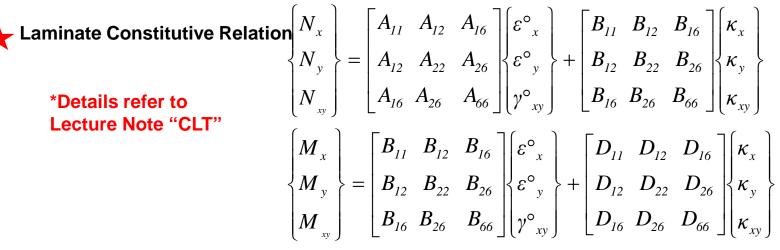


Orientation Dependence of Moduli


Laminate Stress-Strain behaviour

Macromechanic scale

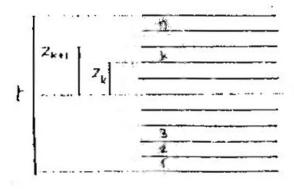
Assumptions:


Resulting deformation

- Perfect lamina bonding
- Infinitely thin bond
- Thin laminate

Laminate stiffness or compliance matrix

- created from summation of transformed lamina matrixes

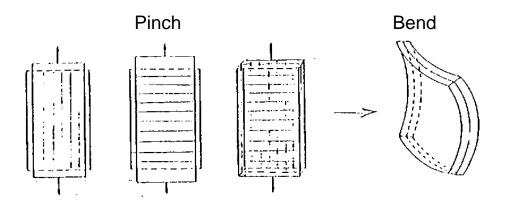

I.e.:

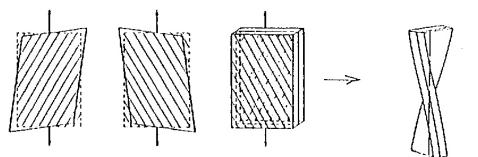
$$\begin{cases} N \\ M \end{cases} = \begin{bmatrix} A & B \\ B & D \end{bmatrix} \begin{cases} \varepsilon^{\circ} \\ \kappa \end{cases}$$
 x,y plate axes

"Laminate stiffnesses"

Where:

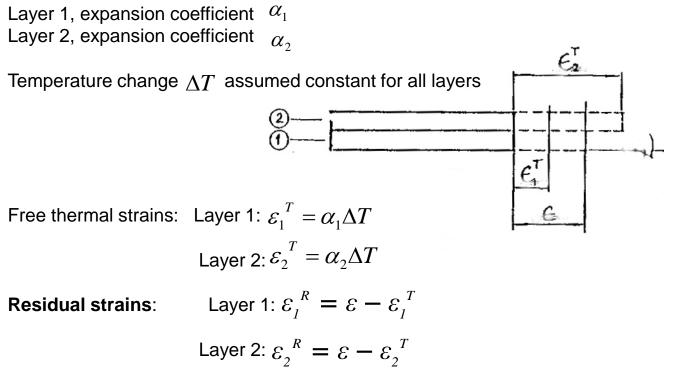
$$A = \sum \left[\overline{Q} \right]_{k} (Z_{k+1} - Z_{k})$$
$$B = \frac{1}{2} \sum \left[\overline{Q} \right]_{k} (Z_{k+1}^{2} - Z_{k}^{2})$$
$$D = \frac{1}{3} \sum \left[\overline{Q} \right]_{k} (Z_{k+1}^{3} - Z_{k}^{3})$$




Coupling between lamina

Lamina @ different orientations \rightarrow Out of plane coupling stresses

Shear


 \checkmark In order to remove coupling effect \rightarrow Need symmetric, balanced laminates!

CHOSUN UNIVERSITY 1946 조선대학교

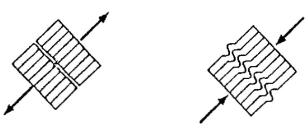
Laminate residual stresses and strains

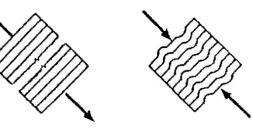
Where \mathcal{E} =Laminate "common strain"

l.e.:

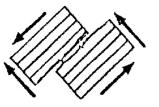
Layer residual strain = laminate common strain less layer free thermal strain

Residual stresses $\{\sigma\} = [Q] \{\varepsilon^R\}$



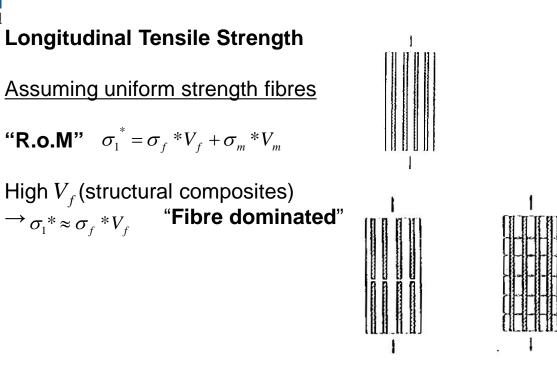


★5 main intra-laminar failure modes:

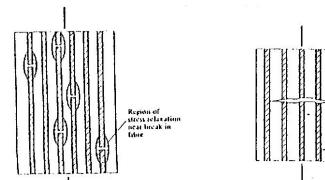

• Longitudinal tension and compression failure

• Transverse tension and compression failure

• In-plane shear failure

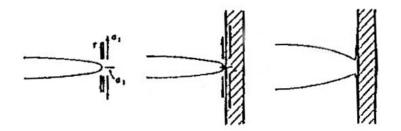


• Mixed modes and Delamination (inter-laminar failure) : Not included in CLT



For variable strength fibres:

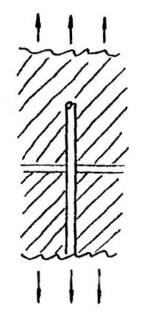
Strength variation: Along fibres and from fibre to fibre \rightarrow **Progressive failure**



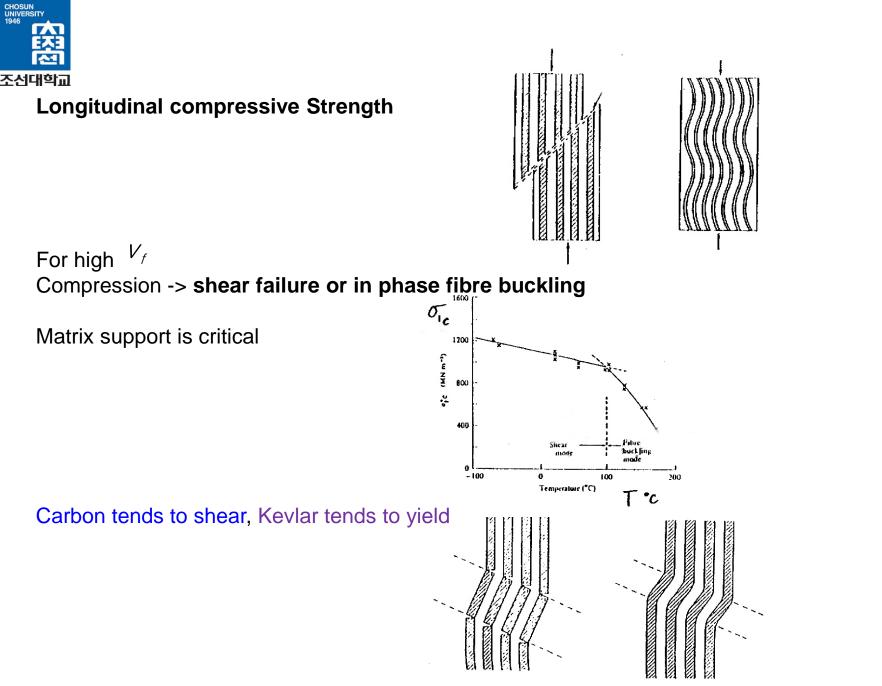
Matrix crack at fibre interface

Fibre pull-out (Toughness)

Fibre fracture energy W_f


Matrix fracture energy W_m

Fibre debond energy W_d

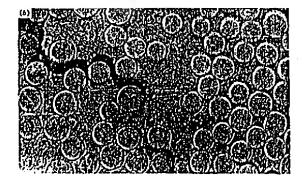

Fibre pull-out energy W_p

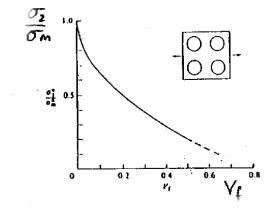
 $W_p >> W_d >> W_m >> W_f$

Pull-out before fracture \rightarrow energy absorption \rightarrow toughness

Transverse tensile strength

Fibre -> "-ve reinforcement

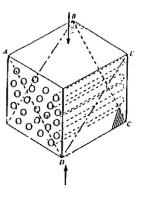

Cross-section reduction


Stress concentration

Depending on:

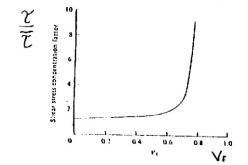
- matrix stress-strain response
- fibre interface bond strength
- V_{f} , fibre packing voids etc.

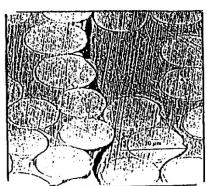
strain magnification between fibres!



Transverse Compressive Strength

- Shear failure across fibres




In-plane Shear Strength

- Matrix or interface dominated

Depending on :

- Matrix stress-strain response
- Fibre interface bond strength
- V_f , fibre packing , void, etc.

Multi-axial loading

- still 5 basic failure modes of intra-lamina failure
- but note in practice : mixed intra-laminar modes and
 - delaminate inter-laminar mode

Intra-laminar Failure Criteria :

Maximum Stress Theory

Failure occurs when: $\sigma_1 = \sigma_1 *, \sigma_2 = \sigma_2 *, \sigma_{12} = \sigma_{12} *$

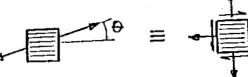
Maximum Strain Theory

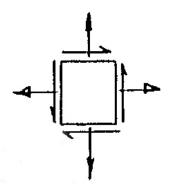
Failure occurs when: $\varepsilon_1 = \varepsilon_1^*, \varepsilon_2 = \varepsilon_2^*, \gamma_{12} = \gamma_{12}^*$

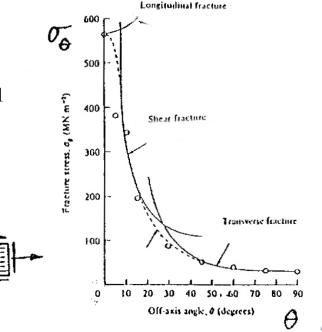
Maximum work theory Tsai-Hill(Von-Mises)

Failure occurs when :

$$\left(\frac{\sigma_1}{\sigma_1^*}\right)^2 + \left(\frac{\sigma_1\sigma_2}{\sigma_1^*}\right) + \left(\frac{\sigma_2}{\sigma_2^*}\right)^2 + \left(\frac{\tau_{12}}{\tau_{12}^*}\right)^2 = 1$$

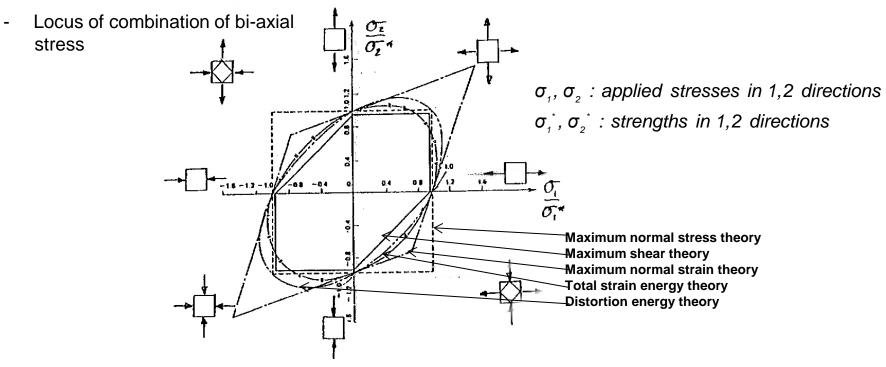

E.g for off-axis loading Resolve stress into 1,2 material axis components :

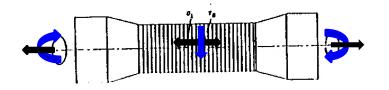

 $\sigma_1, \sigma_2, \tau_{12}$


and check intra-lamina strengths:

 $\sigma_1^{*}, \sigma_2^{*}, au_{12}^{*}$

according to failure criteria





Failure Envelopes

Hoop specimen multi-axial test

- To validate failure criteria

Laminate strength

Definition of laminate failure : 1st ply failure(≈yield failure) (FPF) last ply failure = ultimate failure(LPF)

Iterative Method

- For applied loading on laminate
- Laminate theory

$$\rightarrow \sigma_1, \sigma_2, \tau_{12}]_k$$

• Lamina failure criteria, e.g:

 $\sigma_1 \ge \sigma_1^*, \sigma_2^* \ge \sigma_2^*, \tau_{12} \ge \tau_{12}^*]_k$ failed lamina properties : E₁, E₂ G₁₂→0

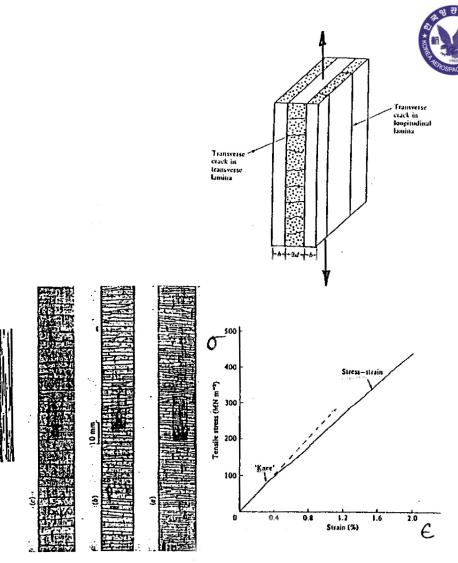
• Repeat until all lamina failed

Assumptions!

Laminate analysis theory

Linear elasticity $(\sigma_2 ! \tau_{12} !) \Rightarrow highly nonlinear$

 \rightarrow give rise to errors in laminar stress calculation


Cross-ply Laminates

Transverse ply failure ≠ final failure

Multiple transverse cracking

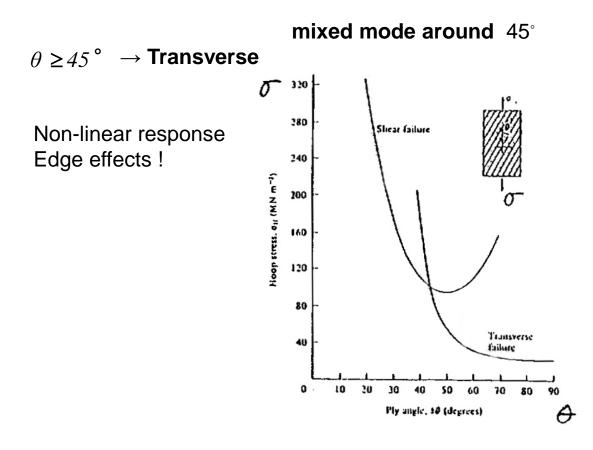
Exponential load transfer

E.g. Cross-ply laminate modulus : E_{CP}

Before transverse cracking "R.o.M"

$$E_{CP1} = \frac{E_1 b}{b+d} + \frac{E_2 d}{b+d}$$

After transverse cracking and total disband Note Poisson constraint effects \rightarrow longitudinal lamina cracking



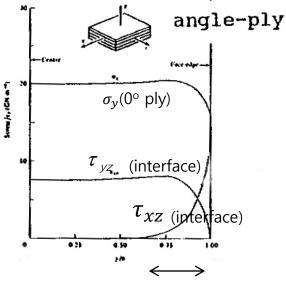
Angle-ply Laminates

Failure modes:

 $\theta < 45^{\circ} \rightarrow$ Shear

Through-thickness Edge Stresses

Classical laminate theory \rightarrow " σ_z , τ_{xz} , τ_{yz} =0"


Only away from laminate edge > $t_{laminate}$ from edge

from edge)

Reality \rightarrow " $\sigma_{z}, \tau_{xz}, \tau_{yz} \neq 0$ "

Very high near laminate edge (< $t_{laminate}$

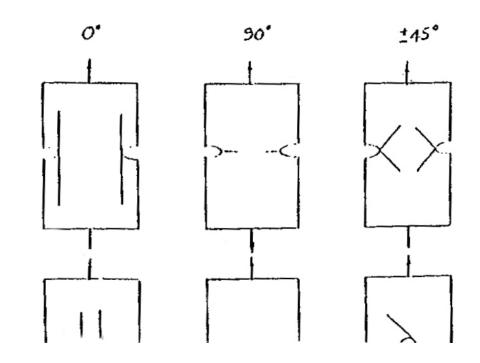
: $\sigma_{\! Z}$, $au_{\chi Z}$

t thickness zone

Layup stacking sequence!

Effect failure processes!

Edge peel!


Notch Stresses

- **Cross-section reduction**
- Stress concentration
- Free-edge peel stress

Static concentration factors $\rightarrow x10!$

Depending on :

- Notch size
- Layup orientations
- Stacking sequence
- Fibre-matrix bond strength

조선대학교 Measurement of design data

Standards : ASTM(America Society for Testing Materials) , CRAG (Composite Research Advisory Group)

Elastic constants , failure stresses and failure strains

- UD laminate $E_1 E_2 G_{12} v_{12}$ $\sigma_1 * \sigma_2 * \tau_{12} * \varepsilon_1 * \varepsilon_2 * \gamma_{12} *$
- Laminate

$$E_{x} E_{y} G_{xy} v_{xy}$$

$$\sigma_{x} * \sigma_{y} * \tau_{xy} * \varepsilon_{x} * \varepsilon_{y} * \gamma_{xy} *$$

Failure stresses and strains are required for both tension & compression

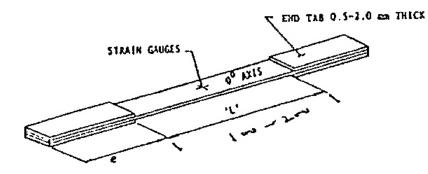
Specimen:

Elastic /anisotropic response \rightarrow Local stress dissipation problems

- Tabs
- Long gauge lengths
- Parallel sides
- Careful alignment

Variability

Specimen Size: thickness (8~16 ply) x width (10~30mm) x length (100~200 mm)



• Consider lowest values – Extreme value statistics(Weibull) : generally 20~30 specimens

Flat parallel sided specimen

Lamina properties

Longitudinal, all 0°

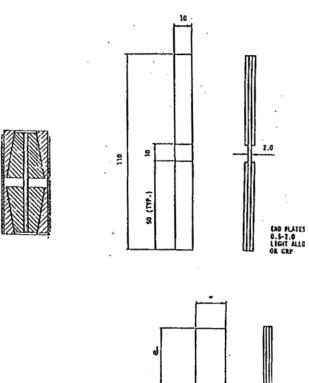
Transverse, all 90°

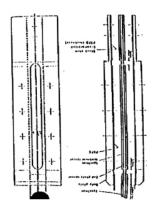
Shear ±45°

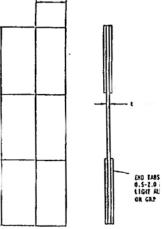
Laminate properties

Plane

Notched

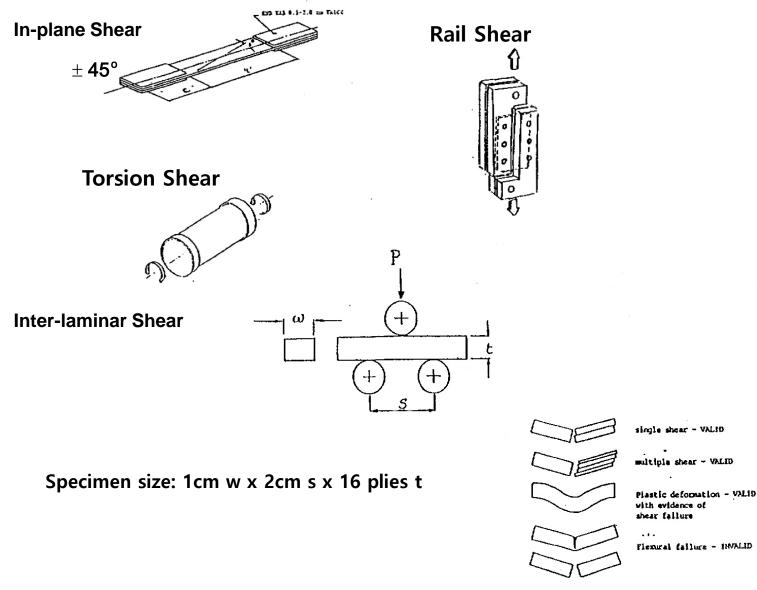


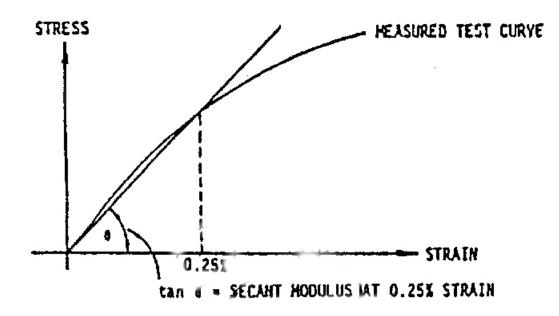

Compression


Avoid buckling

Short gauge length

Long gauge length +anti-buckling guide



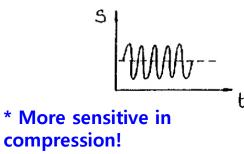


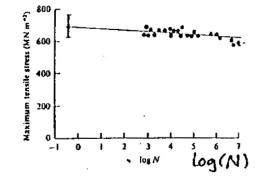
Normalization

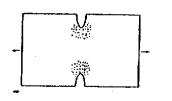
- to chosen value of fibre content for consistency
- according to micromechanics "R.o.M"

Measurement of elastic modulus

Tangent or secant






-Insensitive in tension

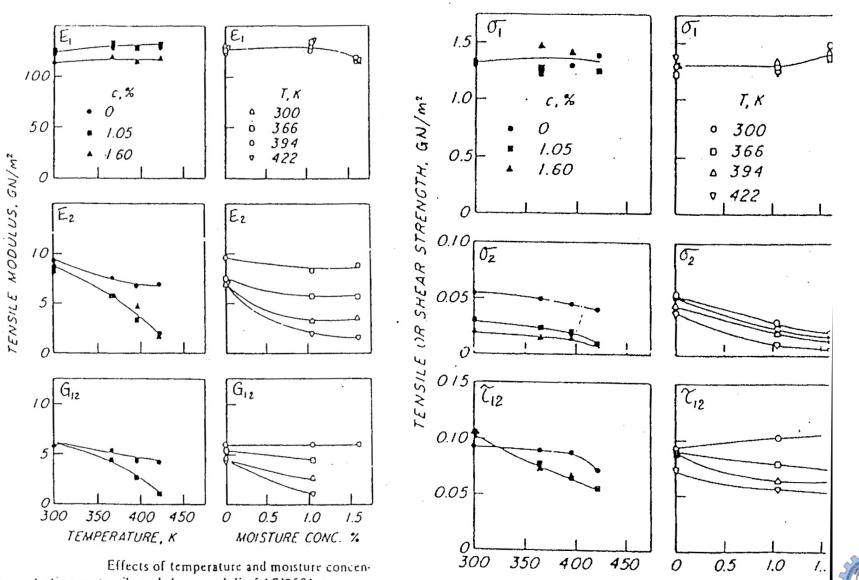
-Notch concentration reduction!

Global damage accumulation

- \rightarrow some stiffness degradation : matrix, interface
- \rightarrow stiffness critical designs!

Hygrothermal effects

- Temperature and moisture
- Prolonged or cycling application
- Flexibilizing and swelling
- \rightarrow some stiffness degradation : matrix, interface


Erosion effects

- Dust, sand, rain
- \rightarrow surface wear + moisture ingress

tration on tensile and shear moduli of AS/3501

TEMPERATURE, K

MOISTURE CONC., %

Measurement of Long Term Behaviour

Fatigue

- Major structural fatigue test x1 Structure samples x3 Coupons x12+
- Cyclic heating!

Low test frequency, long lives! To prevent excess heating, 5~10Hz cyclic frequency!

Ex) at 5Hz, 10⁶ cycles: take 2 days

Moisture

Temperature

Demonstrate no damage growth for:

BVID("barely visible impact damage") hot wet compression fatigue

High energy(Flight impacts, Ballistic impacts)

shock wave

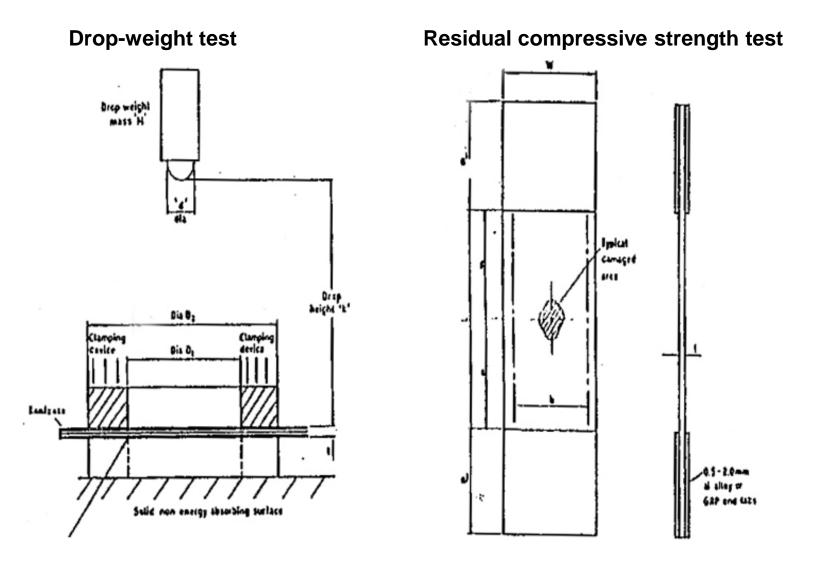
Low energy(Ground operations!)

• Back surface break-out

The problem:

- Elastic to failure
- Low plastic deformation and energy absorption
 - \rightarrow poor impact resistance

solutions :


- Kevlar fibre reinforcement
- Hybrid
- Woven forms
- Thermoplastic

Measurement of Impact Resistance (Low energy)

In service inspection for :

- surface damage
- Delamination
- Impact damage

Non Destructive Testing, NDT

- Visual
- •Ultrasonic scan : Most commonly used method
- X-ray
- Thermal imaging : suitable for glass/epoxy
- Vibration analysis : delamination, skin-core disbonds of sandwich panels

Damage evaluation? Remaining structural integrity? Decisions? Repair/replace Structure/cosmetic Subjective guidelines! Typical design criteria requires that 1 inch dia damage zone (e.g. delamination or impact damage) has negligible growth in the lifetime of aircraft!

조선대학교 Repair/replace

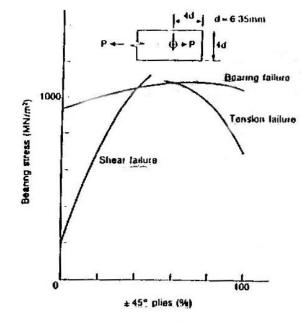
- Bonded patch kits:
- Directional property match
- Out of place loads :
- Thermosets :

Refrigeration Layup orientation Scarf joints Removal of moisture Temperature / pressure cure

In Field! No joint NDT! Ensure correct procedure

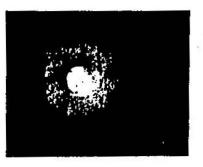
(a) Hoeing 757 aileron repair after vehicle impact damage

Joints


• Bolted joints

Design for **bearing**

Cross-section reduction

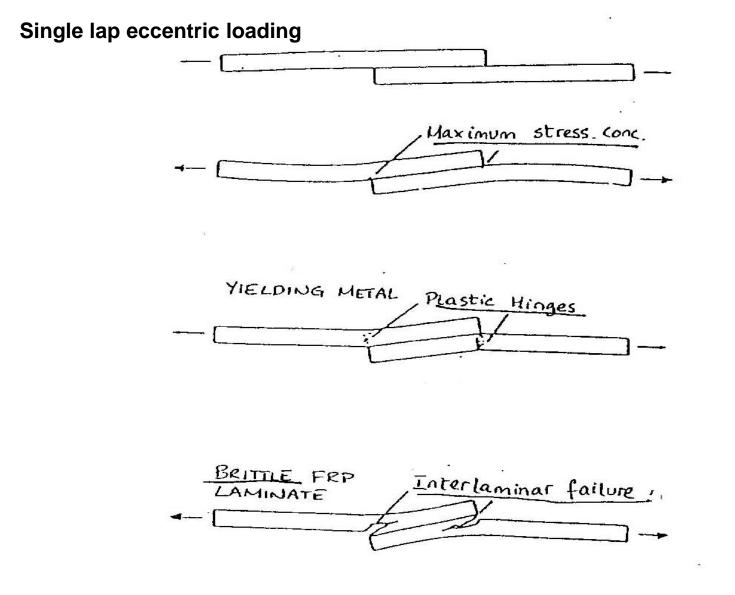

Stress concentration

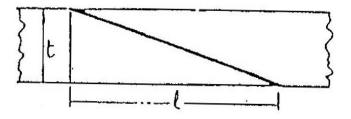
Edge peel stresses

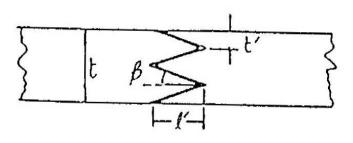
Drilling

Higher tolerances than metal Back face break-out Misplace holes Crushing, Galling Insert-sandwich panels Galvanic reaction

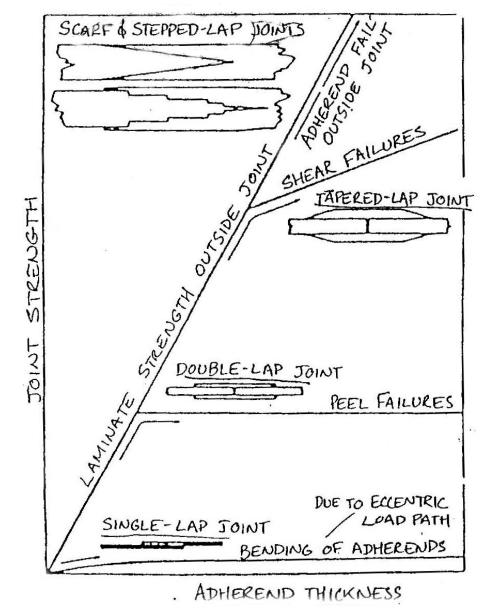
Bonded joints


Preparation Procedure No joint NDT Mismatch : stiffness, thermal Eccentricity



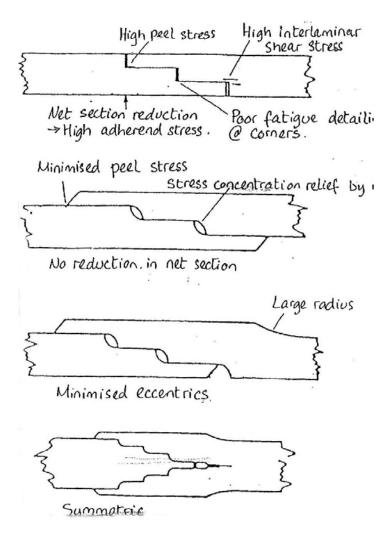


- Increase bond area
- Decrease effective lengths
- For mismatch of adherends (thermal and stiffness)



Joint failure for optimum design and geometry

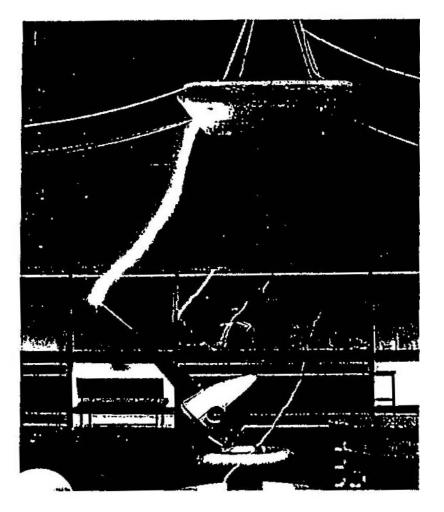
- Influence of joint size and selection of joint configuration



Stepped-lap Joints

ELECTRICAL

Conductivity


- Low electrical conductivity
- Low thermal conductivity

Lightening strike performance

- Poor energy dissipation
- Require metallic mesh, foil, stainless steel
 → weight

Electrical use

- Earth returns
- Uni-pole aerials
- Screening

2 Composite blade undergoing lightning strike test Dowty Rotol Lad

Summary

Advanced Fibre Reinforced Composite Materials :

Special considerations

- ✓ Material made at component stage
- ✓ Different properties in different directions
- ✓ Reinforcing fibres are linear elastic to failure

Incentives

- ✓ Lighter, stiffer , stronger
- ✓ Corrosion resistant, fatigue resistant
- Optimized directional properties

