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Analytical laminate Analysis

“Classical laminate Theory”

The analysis is considered in the following sequence:

1. Stress analysis

- Ofalamina: 1ply
- Of a laminate

2. Strength analysis
- Of alamina

- Of a laminate

A detailed list of this section is given below as a convenient
reference
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Contents:

Lamina stress-strain analysis (Mechanical loading)

Stress-strain system
Constitutive stress-strain relations
Compliance strain-stress relations

— In terms of engineering elastic constants
Summary of elastic constant interrelations
Transformation to general x-y axes

— Generally orthotropic constitutive relation

— Generally orthotropic compliance relation

- Transformed engineering constants
Laminate stress-strain analysis (Mechanical loading)
Classical Lamination theory

— Plate under extensional and flexural loading

— Resulting deformation

— Force and moment resultants

— Layer stresses

— Force and moment resultants
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— Laminate constitutive relation
— For symmetric laminates
— For unsymmetric laminates
. Standard matrix inversions
- Equivalent engineering elastic constants
. Membrane equivalent elastic constants
. Bending equivalent elastic constants
— Layer stresses and strains
. Calculation of mid plane deformations
. Calculation of of layer total strains
. Transformation to 1-2 material axes
. Calculation of layer total stresses

Laminate stress-strain analysis (Hygro-thermal loading)

Thermal analysis
— Single layer plate, one dimension
. Unrestrained
. Fully restrained
- Laminated plate, one dimension
. Free thermal strains
. Residual strains
. Residual stresses
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— Orthotropic laminate plate, two dimensions
. Layer free thermal strains in 1-2 material axis directions
. Layer free thermal strains x-y plate axis directions
. Layer “free thermal stresses” in x-y plate axis directions
. “Thermal forces and moments”
. Laminate common strains
. Layer residual stresses
Hygroscopic analysis
— Moisture diffusion

Lamina Strength analysis

Isotropic Materials
— Common failure criteria for isotropic materials
. Maximum principal stress
. Maximum principal strain
. Maximum shear
. Maximum shear strain energy
— Orthotropic materials
— Common failure criteria for orthotropic materials
. Maximum stress failure criteria
. Maximum strain failure criteria
. Maximum “distortional energy” failure criteria
— Failure envelopes
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Laminate Strength Analysis

Laminate failure definition
Laminate failure analysis procedure
Other modes of failure
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Lamina Stress-Strain Analysis

(Mechanical Loading)

Based on:
- 3D stress-strain system
- Material axes 1,2,3
- Macroscopic Scale

i
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9 stress-strain components are defined in the 3D system:
01105:03,7T53: 732111311121 001, Ty
118518317231 V321 73117130 V120 V1
Relationships are defined between stress and strain assuming:
— Average macroscopic homogeneous linear elastic properties

— Expressed in contracted notation as:

{o}=[C]Jle} Constitutive relation  [C]= Stiffness matrix!

{e}=[s]lc} Compliance relation [S]=Compliance matrix!

“Constitutive” stress-strain relations
— Fully anisotropic

0, Cy Cpy Cy Cy Cpy Cyg | &
0, Ca Cp Cp Gy Cys Cy ] &2
Os | _ Cu Cs Gy Gy Cys Gy |65
Tos CuChp Cu Cu Cu Cue |72
T Coi Cs Co3 Coy Cos Cog || 71
Ty _C61 Ce, Cozs Cou Cos Ces_ 712 J s36ime

independent material constants
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I'ETI - Independent of the order of loading (reciprocal behaviour)
0, _Cn Cp C Cy Cis Cpg | &
F Cp Cp Cyi Gy Cps Cy ||,
O3 | _ Cis Cpi Gy Cyy C5Cy |5
To CuCu Cy Cu Cus Cyg |72
T Cis Cps Ci5 Cus Cys Cyg || 713
V) _ClG Cyx Cy Cu Cu Css_ Y12 J 21ime

- 3 mutually perpendicular planes of symmetry (orthotropic)

o] [CuCyCy 0 0 0 (g

0, C, CpCyu 0 0 0 |lg

o3| [Cis G Gy 0 0 0 |]eg

Ty 0 0 0 C,, 0 0 |[|rs -~
Ta1 0 0 0 0 GCx0 ||rs _,:s-‘"‘r 2

) [0 0 0 0 0 Cg|{7i2]gine = %

- Plane stress -

0, CuCpn0 &
o, 1={Cp Cy &
0 O

0
Ces (712 sime

T

- “Reduced stiffness matrix”

0, QuQ,0 (g
0, =|Qp Qu 0 [é&,
T12 0 0 Qg [Vi2 dime
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V12 66 | (712 ) 4imc
le}=[sli}
In terms of Engineering Elastic Constants 21 fi
— For Orthotropic material under a 2D plane stress system I
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— Consider Stress components separately:

Strains:
-V
£ = oy 2%
E, E,
£, = —Vip0y Oy 0
E, E,
T
o= 0 0 G;Z
12

l.e.: compliance relationship:

i B V21 0
g E, E, o,
-V, 1
&, (= — 0 (o,
E, E,
V12 [27)
o o L
L GlZ i
Stress:
* Constitutive relationship:
E, VyuEy
o (1 - V12V21) (1 - V12V21) £
' v, E, E, '
O, = &
I (1 — ViV ) (1 — ViV ) ¥
12 1 12
0 0 —
L Gl2 i
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*Note: 4imc: E, E, v,, G,
*Note v, #v, Butreciprocal relation = v,E, =v,FE,

v, = Major poisson ratio

. . . ¢Range of orthotropi poisson ratio:
v,, = Minjor poisson ratio

- For isotropic material:
E,=E,=E
Vy =V, =V Range of isotropic poisson ratio:

_E
2(1+V)

G,=G

.e.2imc: E,v
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Summary of Elastic Constant Interrelations
For plane stress / orthotropic material
- Engineering = Compliance = Stiffness

E, =1/S, = (QllQ?_Z _Q212 )/ Q.

E, =1/S,, = (Q11Q22 - Q212 )/ Qu

Vip =-5,/S; =Qu/Qy

Var =-5,15, =Q,/Qy,

G, =1/S¢ = Qe

- Stiffness = Engineering = Compliance

Qu =B /0-Vpvy)  =5,1(5,5, =S 212)

Qy, =B, /(1-VppVy) =S8, /(S1:S5 — 8212)

Qp =V E, I(1=Vy,Vy,) = =S, /(8,8 =S 212)
Qss =Gy, =1/S¢

- Compliance = Engineering = Stiffness

Sy =1/E, = Q,;/(QuQ,; —Qr)
S22 =1/E, = Qu/(QuQy; -Q%r)
Si2 =V, [ = Q/(QuQ, - Q’r)
Ses =1/G, = 1/Qg
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Transformation to general x-y axes
“Generally orthotropic”

Generally orthotropic constitutive relation
— Starting with:

0, Q; Q.0 &
0,=Qp Qp0 &
Ty 0 0 Qe lre

Where [Q]= Reduced stiffness matrix in 1-2 material axes

— Transform by trigonometric transformation to produce general

structural axis relations at angle ¢ n
l.e.: Y
O, Q11 Q12 Q16 Ey
Oyr= Qi Qu Qs &y
(% Qi Qa6 Qs |7y .

where [Q] is the “Transformed reduced stiffness matrix”
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— In general x-y plate axes

Calculated from [Q]=[T*[Q[T]”

2 2

m 2mn
where [T]= [n* m? -2mn And m=cosd n=sing

—mn mn m?-n?

n

I.e. simply geometric transformation
Generally orthotropic compliance relation
— Starting with

& Sy S5, 0 0,

where [S]= Reduced compliance matrix in 1-2 material axes

- Transform by trigonometric transformation to produce general
structural axis relations at angle ¢
le.: Y
Ex 5j11§'12§'13 O
&y 1= S21 522 823 o,

Yy S31 832 S33 T X

XY J 4imc
where [S] is the “Transformed reduced compliance B

matrix”
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- In full:
Transformed stiffness constants:
* 611 =Qum* +2(Q,, +Qg)n’m* +Q,,n*
612 =(Qu +Q,, _4Q66)n2m2 +Qy (n*+m*)
Qy = Qun* +2(Q, +2Qg)n’m? +Q,,m*
616 =(Qu - Q- 2Qee)nm3 +(Q, —Qy + ZQee)nsm
626 =(Q; — Q- ZQse)ngm +(Qp —Qy + ZQse)nm3

666 =(Qu +Q, -2Q, _2Q66)n2m2 +Qg (n* +m?)

Transformed compliance constants:
S =5,,m* +(2S,, + Sg)n*m? +S,,n
S12 = (S, +S,, —Sgg)N°M2 + S, (n* +m*)
Sz =5,n* +(2S,, + Sg)n?m? +S,,m*
Sis = (2S,, —2S,, — S )NM® — (2S,, —2S,, — S¢ )n°m
S = (25, —2S,, — Sg )N°M—(2S,, — 2S,, — S¢e )NM®
Ses =2(2S,, +2S,, —4S,, —Sg)n?m? + S (n* +m*)

where m=cosd n=siné
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E, =1/|1/E )m* + (1/G,, —2v,, | E))n°m? + (1/ E,)n* ]

E, =U/|(/E, )n* + (1/G,, - 2v,, / E)n?m? + (1/ E,)m"*]

v, =E,[(v,/E,)n* +m*)= (/E, +1/ E, —1/G,,)n’m?

v, =E,|(vip /E, (0" +m*)— 1/ E, +1/E, 1/Glz)n2m2]

G,, =1/|(4/E, +41E, +8u, /E) n?m? + (- )(m? — n?)? )]

m, =E,[m*n(/G,, - 2v,, / E, - 2/ E,) —mn (1/(312 2v,, | E,—2/E,)|
m, =E,[mn*(/ Gy, —2v,, /E, — 2/ E,) ~m*n(1/ Gy, — 2v, / E, — 2/ E,)]

m,, m,: “shear coupling coefficients”; i.e. similar to poisson

X

ratio deformation

m, = _yxy/gx Vi =8y /gx
m, = _nylgy | Ve ==&l &,
1° 0.4
4:0.3
i 0.2 ny
¢ 0.1

A U — .~ " 8
'] L1- - I I L LB [

[=)
| R _— y - d
@ 10 0 W 0 0 s 0 I % 172
oty




CHOSUN
UNIVERSITY

1946 m
X

=1

Laminate Stress-Strain Analysis

Mechanical Loading

Classical Lamination Theory
- Based on the constitutive relations for a lamina (as outlined
above), i.e., linear elastic, generally orthotropic homogeneous
material, assuming small deformation theory, i.e. plane sections
remain plane
1. Plate under extensional and flexural loading:
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where:

N,,N,, N, = “loading intensities” i.e., forces per unit width of laminate

M,,M M, =“moment intensities” i.e., moments per unit width of laminate

*Note: M, is defined as: “the moment which causes direct stresses in the x

direction etc.”

2. Resulting deformation

Laminate mid plate strainsl Laminate mid plate curvatures

Here, defined as:

15)4

o, =%
oy

o, Qo o
oy oX

Total layer strains:

&

_ .0
X =& x+ZKX

_ .0
g, =& yt1ikK,

0
7/xyk =7 XY+Zny

o —0°w,
'S
- 0w,
K
y 2
oy
—20°w,
K =
Xy
OXoy

-~ L .~
J}l:,f A =
x Tz \ s
o T =
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1.2 Strain and Displacement

Assumption:
1) Plies are bonded perfectly.

2) Bonding thickness is neglected.
3) Ply thickness is very thin, so it can be considered as plane stress.

4) Laminate thicknesswise strain distribution is linear.

% In order to satisfy the assumption above, after deformation z-directional shear
stress and normal stress must be neglected.

WA
; C c
sz ’ A
] i I t I : E, &, ,E
n X, 'Y, Z axIS strains x1Cy16;

B o
Before deformation ~Ja X, Y, z axis displacements:  U,v,w
7

!L-I—--—-Epfr

After deformation

in

t
=

— | S Foik
Fig. 2 x-z plane geometrical configuration % o) }
LaX

i wly e
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=Mcietm - © As shown in Fig. 2 when point P moves to P’ due to deformation, x directional
displacement between C and C’ is defined as UO , and let distance between mid plane
axis x and P be z, Then x directional displacement of P is;

Hp =— Uy — Zp Si]’l 4 4 (4.5)
If & is very small angle, SINa =~ a
Up = My — Zp (4.6)
OWy
a=—
OX

¢ X directional displacement of z axis arbitrary point is;

H— Uy — 2&X

al{.-'u
=Wy — I
ox
i — . . (4.7)
« Similarly y directional displacement is;
A
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_ aw,
V=1 — 2 5
assume ¢, =0,y7,, =0,y, =0 (plane strain)
g

== _az
E_}r —_ g;

o ov

Tes = oy - x

(Elastic strains in x - y plane)
- Substitute (4.7), (4.8) for (4.9),

&, becomes,

(4.9)
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F_E'T!'
S )
%iﬂ ai(z%?)
== 2m)
aaz;ﬂ air(zaz;;u)
Tan = ai (=250 + gx(”“—zaa‘a;ﬂ)
@:82

— =0 (x, y are independent from z)
oX oYy

— aHu . 321{.&;
Ex —'—-ax 2 —-—axz
— 3’1}.;. . BEWU
Ey By Z ayz
a— auu aﬂg . azwu
Tay dy + ox 22 oxdy

(4.10)

@1 HE

10k
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xMisl OU, OV, OU, N oV, _ _
ox ' oy oy | ox . strains at mid plane —express by

aHu . O

0x S
9y 0

dy >

aM{} 31?.;. — 0

3y -+ el Ty (4.12)
rsx b "E.ru y q;: 3

{8y » = {Eyﬂ >+ 2Ky p




CHOSUN
UNIVERSITY

X

=1

;

azw.:. ‘
dx?

32w|u
oy?
62%’0
2 0x0y

&
I
.

(4.14)

Where K, :x-directional curvature of neutral plane
K, : y-directional curvature of neutral plane
K, : torsional curvature of neutral plane
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l.e..
0
&y & x Ky
g, + =1&% t+12iK
y - y y
0 .
X K Where  z=z, for value at btmof layer thickness
Y xy k - Xy =7, ., for value at top of layer thickness
Z:L;kﬂ for value at middle of layer thickness
Membrane Bending
strain strain

3. Force and Moment resultants

For equilibrium, applied forces and moments must be balanced by
internal stresses

Equilibrium of forces:

+1/2

No=[ odz
4//2 NX /2 x Zk+1 x
+t/2 +1 +

N :j odzbt AN =j o, \dz = j o, b dz

4 —t/2 Vd 4 —t/2 | 7Y Z Zk ' @
+t/2 /V T T
_ Xy Xy Xy )
N, = j_[/ZTXde
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Equilibrium of Moments:
+1/2

M :I zo .0z
X X
_”/22 M, /2 x O
+1 +t Zki1
M, = Zo,az M :_[ o, 207 = j o, v Z0z
Yoo s _tr2 | Y z 2, v ®
+£/2 M T T
— Xy xy X )k
/%/ .[—r/z ZTXde

where summation Z applies from layer k=1 to n

4. Layer stresses
From the previous lamina analysis the x-y stress in layer kis given

by:
O, 611 612 616 &y
Oyr = 612 622 626 &y @

Ty )y Qs Qus Qs v Vxy )

where [6] is the reduced transformed stiffness matrix in the x-y

axes

Substitute M in @ gives:

o, Qi1 Qpp Que &% Q1 Qpp Qe K, @
= . T
Oyr = QpQyp Q| 16y ¢ +[Qp Qp Qu | 2 Ky

. 0 — — )
T X K. | Wherez=z, for value at btm of layer thicknes
X J k Q15 Q 26 Q 66 ]y - k Q15 Q 26 Q 66 | Xy =7, for value at top of layer thicknes:

z:% for value at middle of layer thick




CHOSUN
UNIVERSITY

X

=1

5. Force and Moment results
Equilibrium of force :

Substitute ®into 2

N, 7 E'x - K,
Ny =) [dziey t +X[Q) [zdzik,
Z . 2y
N,y 7w Ky )

E'x K,
=Z[6]k(zk+1_zk) &y +%Z[_Q]k(22k+1—22k) k,
7 K kxy
[A] [B]

Equilibrium of moments :

Substitute Ginto @

M g’ g’

X Zi g Zin X
M, =Z[6]k [2dzq &7, +Z[6]k [2%dz{ey
M., - 7y « a 7y .
E°x kx
=%Z[6:|k(zzk+l_zzk) £y +%Z[5]k(zsk+1—z3k) K,
S « kxy .

[B] [D]
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6. Laminate Constitutive Relation

Nx A11 A12 A16 &'x Bll BlZ Bls kx
N, ¢=| Ay Ay Ag [1€°y 11| By By, By K

y y

N,y As Ao Aee || 7 Bis Bz Bes Ky

Mx Bll BlZ Bl6 € x D11 D12 DlG kx

|\/|y =| By, By, By 1€y (+| Dy Dy, Dy ky

Mxy B16 Bze Bes 7 D16 Dze D66 kxy
lLe.:

N AB ||¢g

= wrt X, y plate axes

M BD]|lk
“ Laminate stiffnesses”

where :

A =Z[6]k (Zk+1 - Zk)
B :%Z[a]k (Z%n—Z%)

D :%Z[é]k (Z%:1—Z%)
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* Symmetric laminates: [B]=0 — No extension-bending coupling

Extensional orthotropy: A,= A, =0 — No direct-shear coupling

Flexural orthotropy : D, =D,, =0 — No bend-twist coupling
Special orthotropy : — Extensional orthotropy + Flexural orthotorpy

7. Laminate Compliance Relation
Solving for laminate strains

&) | A"B'[[N
= wrt X,y
k C'D'|M
Inverted stiffness matrix, i.e “Compliance matrix”

* a) For symmetric laminates [B]=0
A and D matrixes can be inverted independently using standard
matrix inversions :

W] [a] =[a]
[0']- [0} =[u]
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Then :
g =[a]N
k=[d]N
le.:

e loa)

= wrt X, y

k 0od||M

b) For asymmetric Iaminate[B]¢ 0
l.e. with extension-bending coupling

. Coupled inverted matrixes A',B',C',D' must be derived

{E} = {5 Ell}{:\\lﬂ } wrt X, y
where
[A]=[A)-[B*]D**[c+]

- [o
o)-o+ o

o')-o]
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° 1 plt
{i }{é ;HEA} wrt X,y Usually C'=B!
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Standard matrix inversions:

Conversion of a full 3x3 matrix R;into its inverse r;

R. R, R

1 N Ryg R
R Ry Rys | = 1y, Mg
Ris Ry Ry RRPEREY

where,

r,=(R,,R;; —R%s)/RR
r,, =(R,R;; — R%3)/RR

r,=(R R, —R%*2)/RR
D) :(Rl3 R23 - R12 R33)/ RR
r;=(R,R,; —R“2R;;)/RR

I :(Rlz R13 - R11R23)/ RR
and

RR = R,;R,, Ry + 2R, R, R, — Ry, R%3 — Ry;R%12 — R R %2
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X

RR = R,R,, + R°1
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8. Equivalent Engineering Elastic Constants
For symmetric laminates, [B]=0

Using to work in familiar E, G, v terms in initial laminate design
* a) Membrane equivalent elastic constants
Derived by considering average laminate stresses:

o,=N,/t,oc, =N It,z, =N, [/t
E, =l/(ta,)

E, =1/(tay,)
G,, =1/(tas)
Vy ==&, /a11

Vix =—ap, /3-22
m, =—a; /all

m, =—ay/a,
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b) Bending equivalent elastic constants
Derived by considering general theory of bending: M/k=EI
Where / = ¢*/ 12 for laminate thickness t and unit width

E, =12/(t*d,)

dM M

K= = —

E, =12/(t°d,,) El

1 12

E=aae

G,, =12/(t°dy,)

Vi :_dlz /d11

Vix :_d12/d22

m, =_d13/d11

m, =—d,; /d,
where a; and d; are compliance parameters from the inverse

laminate stiffness matrixes, [A]*'and [D]' and t=laminate thickness
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r2=1 9. Layer Stresses and Strains

Once the laminate stiffness and inverse stiffness (compliance)
matrixes have been found the layer strains and stresses can be
calculated in x-y co-ordinates for

use with chosen failure criteria.

a. Calculate mid plane deformations

&'x _a11 ay, ay by by, by 11N
&y 8y Ay Ay b12 bzz b26 Ny
7y _ Qe 8y Ags Dig Dy Dgs || Noy
Ky by by, by dyy dy, dig || M,
ky b, by, Dy by, by by || M y
kxy | Dig bag bes by Dy Dgs | M,

All b terms go to zero for symmetric laminates
b. Calculate layer total strains. e.g. for layer k:

&y Ex+ Zkkx
g, ¢t =18y +7,k,
Pl 7y fimeecs s o
z:% for value at middle of layer thickness
c. Transform to 1-2 material axes d. Calculate layer total 1-2 stresses
& = [Tke, o, =[O &,
712 k 7/)()/ K

T
12) , Viz ),
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Laminate Stress-Strain Analysis

Hygrothermal Loading
- Hygrothermal — Thermal and hygroscopic effects, i.e.

temperature and moisture
Thermal Analysis

Assuming: 2? ?

- Linear elastic response at elevated temperature
l.e. “Thermo-elastic” analysis
- Constant thermal expansion coefficients, «
- Constant temperature distribution through thickness, AT

Single layer plate, one dimension

— Expansion coefficient «
- Temperature change AT assumed constant through thickness

Unrestrained
— Thermal strain c=a AT =¢" “Free thermal strain”

— Thermal stress o =0 I.e. unrestrained

Fully restrained
— Thermal strain £=cAT =¢® “Residual strain”

— Thermal stress o =E&® =o" “Residual stress”

171!

Lo AT

RN
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Laminated plate, one dimension

— Layer 1, expansion coefficient «,

— Layer 2, expansion coefficient «,

- Temperature change AT assumed constant for all layers
Free thermal strains : Layer 1: &' =a,AT

Layer 2: &, =a,AT

€1
Residual strains Layer 1: gf=¢—¢ AT @— B N
i i B
Layer 2: &, =¢—¢," AT & r
E
where g¢=Laminate “common strain”
Residual stresses Layer 1: o, =Egf

Layer 2: o,° =Esg,"

l.e.: Layer residual strain = laminate common strain
less layer free thermal strain

R T R R
e =¢-&. and o," =Eg
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=1] Orthotropic laminated plate, two dimensions

Z4oiciul - Layer expansion coefficients a, ,a, ,a,, in 1-2 material directions, temperature charge AT assumed
constant for all layers

1. Layer free thermal strains in 1-2 material axis directions :

T
& o, AT
82T =q0,4T
T
Y12 0, AT K

K

2. Layer free thermal strains in x-y plate axis directions :

T T

gx 81

T T
&y :[T] &

T T
Yy < V12 K

3. Layer “free thermal stresses” in x-y plate axis directions :

T T
O-X 6‘X

T Py T
Oy = [Q]K &y

T T
Tyy Vxy

K K

4. “Thermal forces and moments”

T T T T

N M O, M « , o,

K+1 K+1

T _ T T T

N, = Z Z o, dz M, = Z o, zdz
T K T z

N T T K T

Xy Xy K Mxy Txy K

where summation . applies from layer k=1 to n
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= 5. Laminate common strains

- obtained by laminate analysis based on free thermal forces and
moments

&y E x kx

£y =4 &'y r+ 23k, Q)
]/xy K }/OXV K kxy

k

Where, z=¢z for value at btm of layer thickness

z =z, ,,for value at top of layer thickness

z :%for value at middle of layer thickness

6. Layer residual strains

&Ry g, aXAT

g%y p =96, ¢ —qa,AT

]/ny K 7xy K aXyAT

Layer Layer Layer
residual common free thermal
strains strains strains

7. Layer residual stresses
(o eRx
0"y :[E]K gty
tTny K 7ny

K
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Hygroscopic analysis
Similar to thermal analysis

Using:

. Moisture coefficients of expansion g, , g, (analogousto «, , a,)
. Moisture content m (analogous toAT)

. But note:

- Moisture contents M variation through laminate ( AT assumed
constant) — cannottake m outside integrals
Then calculate equivalent free hygroscopic loads and moments, etc.

N, MH,
N, M,
Ny ) My )

As for thermal analysis, etc.
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Moisture diffusion

Ficke’s law of diffusion; - .
_ - —2— 100% RH
% — DXOI % E: 0a)- l;l"-.'___ qu‘ ﬂH
ot ot \dx 5 /1 o—"—— 76% RH
dc EE, 06|=- _/r';,,.---—— 62% AH
where — = water concentration gradient o ://':./f' Y A9%. RH
dX E, gal-— /. ..._'_..I'_'-_
. . - . . . o i .-r'"f___,_..i-—--*—'—' 32% AH
D, =Diffusion coefficient in x direction 2 02| g e
:"'-f-_,_p.——'_-‘_- fE‘i‘LRH
For an infinitely large plate "": ; L .
M, _ 4 Dt 200t ¢
M, h\ x
where

M,=Mass of water absorbed across Unit surface area in time t

M_=Mass of water absorbed at saturation
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Lamina Strength Analysis
- First consider as Isotropic Materials
. Same strength all directions
- 3 failure stresses or strains defined at yield or ultimate failure

condition
Failure Failure Mode
Stress Strain
og* £*, Tension
o.* £*, Compression
=
T* y* Shear T 0%

*Note strength values are the same in all directions

Common Failure Criteria for Isotropic Materials
— Failure is governed by principal stresses or strains

o,+o 1
_ y 2 2
O1= Oyax = > +E\/(O'X —ay) +4<7xy
o,+0 1
— _ y 2 2
02= Oyn = > --EX/(JX —Jy) +4o,,
_ Ouax T Omin
Tyax = 5

0= %tanl{ery /(CfX —0oy )}
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Giving the following failure criteria:
1. Maximum principal stress

Failure occurs when: o, >0, *

*
Omn = O¢

2. Maximum principal strain(Rankine)
Failure occurs when : ¢, > *

*
Eun = €c

3. Maximum shear ( Tresca)

Failure occurs when: Ty > T

4. Maximum shear strain energy (von Mises)

Failure occurs When oy’ + O’ - Gumx Gu > 0 *
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Orthotropic Materials
— Failure is governed by different strength in different directions

Failure Failure Mode ' /
Stress Strain “ Intra-lamina”
. . L .
o*; e*; Longitudinal tension Coronsemn s
“1-1/T”
o*c % Longitudinal compression @
“1'1/ C” {Longdudenal comzraser]
c*, % Transverse tension %
4
“2-2/T” \\
(Transverse tension)
o *,e %, Transverse compression
H2_2/CH
{7 ansvese Campress.on)
T*, r*, In-place shear

12 V)

{in plare snear)
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}‘ﬂmg‘m* Intra —lamina failure criteria for orthotropic materials
— Failure is governed by directional material strengths rather than
principal stresses or strains
1. Maximum stress failure criteria

E‘

Failure occurs when: o, >o*, o

—
O >0% ‘i -1
1C 1Cc -

*
Oyr >0 "1

Oy >0 %y
- MaxStress

&ar
. , HexStrain

— - - = Max distortion

*
Ty >T 7

2. Maximum strain failure criteria

Failure occurs when: ¢, >¢&*;

& > €% g |
Exq >E%
Exc > €% ¢
Y2 > 7 ™0
3. Maximum “distortional energy” failure criteria (Tsai-Hill)
Failure occurs when:

(q'r. [o*y )2 + (O-ZT [0y )2 + (712 I, )2 + (JlT o™y )(GZT [o% )> 1 30 6o

l.e. failure index sum >1
Also : Tsai-Wu , Hoffman etc.
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Failure envelopes in “2D stress or strain space”
- Representing the combinations of stress that cause failure

Max stress Non-interactive, linear
Max strain Non-interactive, linear
Max “distortional energy” Interactive, quadratic

Failure envelopes in 2D stress

| =ik =Y =F
L i i

R

el By Secenaon a2 1

o B A 5 Vi porbon - eponp Teber

Srdor fi
& b 3

-

B0l (OE) 23008 000
i 1 L [




X AMCHSk
Fail

ure Envelopes

Locus of combination of bi-axial [__L'IJ o=
stress f { Fz" it
| ____"4,,.;{::< . o,, 0, : applied stresses in 1,2 directions
i /’// \{} / 0., 0, : strengths in 1,2 directions
/ 7 \,
Y/ : ulc D‘l : 'i’ Al}s‘—D—" O;_

Hoop specimen multi-axial test

To validate failure criteria

5?«

/ '
[}
/il
~ ENMaximum normal stress theory
sl oo

aximum shear theory
aximum normal strain theory
otal strain energy theory
istortion energy theory

o

-
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Laminate strength analysis

Laminate failure definition
Progressive failure
—First ply failure
. Usually matrix dominated
l.e. 2-2 or 1-2 modes
. Non-catastrophic
. Equivalent to yield failure condition
- Last ply failure
. Fibre dominated
l.e. 1-1 mode
e.g. Cross-ply Laminate
FPF: transverse ply failure
LPF: load direction ply failure

At final failure: multiple transverse cracking, exponential load

transfer

(T‘JI,
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Laminate failure analysis procedure
Laminate analysis

l

Stresses and strains in each layer in 1-2 material axes

l

Check failure criteria for each mode of each layer

!

Assume failure for ply with lowest RF at RF x applied loads
If layer has failed in matrix dominated mode, i.e. 2-2 or 1-2
Then degrade (reduce) the layer properties and repeat
analysis

!

If layer has failed in fibore dominated mode, i.e. 1-1

Then assume final failure and stop analysis

el T

Inter-lamina modes of failure
- “Inter-lamina” failure, i.e. delamination is associated with
. Through thickness stresses at laminate edges
. Impact damage
. Hole and notch stress concentrations O
— Delamination is not accounted for in classical laminate analysis
and is usually covered by reduced allowables and more
detailed analysis
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Empirical Laminate Analysis

Approximate methods of laminate analysis are needed to
compliment full computer laminate analysis for initial design and

checks.

The following empirical laminate analysis methods are considered:

Netting (0%) Rule }
10% Rule Rules of mixtures

Carpet plots

Each is considered in turn below

Laminate 0% Rule of Mixtures
(“Netting Rule”)
Application:

— To provide a preliminary initial sizing of QI laminates for
strength and stiffness /

Assumptions:
- Loads are carried only in the fibre directions /
— No contribution from off-axis layers
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Data :

- Longitudinal strength and stiffness of basic layer
Limitations :

— Fibre failure criteria only

- Extensional “membrane” loading only

— Applicable to fibre dominated layups only

— Not applicable for prediction of matrix dominated properties

Method:

— The fibre direction properties are factored by a scaling factor
and their thickness ratio which provides an estimate of the
layer contribution according to the orientation and loading
system. For the netting analysis method the scaling
contribution factor is zero for off-axis plies

. i = ';:.-.*. ’ }
Bl A
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0%(Netting) Rule for laminate stiffness or strengths

Loading Stiffness  %ply contribution factor  Apply to

Strength  0° +45 90°
E, 1.0 0 0 E,
E, 0 0 1.0 E,
G,y No prediction of off-axis stiffness
Uni-axial o, 1.0 0 0 o,*
longitudinal
Uni-axial o, 0 0 1.0 o*
Transverse
Bi-axial T 0 1.0 0 o*

Xy

Equal/opposite sign
i.e. pure shear

x RoM ply thickness fraction
t [ t

0° 45 90°

t t t

Note t,. =t /12

+45°
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Example Application

Laminate initial sizing using netting analysis
Given plate loading N,,N,,N, and sizing for strength:
— Consider N,,N,,N,, loading separately

— Select layer orientations aligned with loading
— Initially account for thickness of aligned layers only

5 E
(B B

1. For direct loading intensity N,

: N t
Design for o, = T <o *L=

o,
l.e. required thickness of 0°layers

2. For direct loading intensity N,

: N t N -
__ Y 90° y _
Design for o, = SO o 2 ~for t=t, initially
1

N

l.e. required thickness of 90°layers
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3. For shear loading intensity N,

. N t,. N _
Design for o, = Lot > for t =1 initially
0,

l.e. required thickness of 45° layers

*Note t,_ =t /2

+45

4. Number of required layers at each angle #of ply thickness

p

t can then be calculated: i.e. n, = %
ol

Laminate 10% Rule of Mixtures
- Proposed by Hart-Smith
Application:
- To provide estimation of strengths and stiffness for QI
laminates

Assumptions :
— Generally, off-axis layers contribute 10% of their strength and

stiffness in the direction of loading.

Data :
— Longitudinal tension and compression strength and stiffness
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Limitations :

- 0,90,+£45° fibre dominated layups only

- Extensional (membrane) loading only

— final ply failure (fibre failure ) significant errors for matrix
dominated properties.

Method:

- The fibre direction properties are factored by their thickness
ratio and a scaling factor which provides an estimate of the
layer contribution according to the orientation and loading
system

1.8
FOREUL PR W SO T PO Ly, LM TR

F
b () POTE UAFS 8 AanTi BF 100 HBCERT wRd

LAMBMATE: a8
To-Likm
LTWINELS
EATHD ESE,

ax
[N

i
—— —

| — | i i 1 [
[] io 1 Il_ i i3 "

# I GALTT
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10% Rule for laminate stiffness

Loading Stiffness % ply contribution factor Apply to

0° +45° 90°
E, 1.0 0.1 0.1 E,
E, 0.1 0.1 1.0 E,
G, 0.1 0.55 0.1 E,
2(1+v*)
x RoM ply thickness fraction
0% t¢45° tgo
t t t
1

v,, forQl laminates =

00N
1+4 /690
00+ 45°

i.e. with plies in all 0°,+45°, 90° directions

where v *is the poisson ratio of the “complimentary layup” for doubly symmetric
laminates, e.g.:

for £45° v* = V. =0.05
for 0°,90° v* = Vo g =0.8
for 0°, +45°,90° v* =V a5 00 =0.33
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10% Rule for laminates strengths*
*Note, here layer contribution factor also depends on loading system

Loading Strength % ply contribution factor  Apply to

0° +45° 90°

Uniaxial o, 1.0 0.1 0.1 o*

o—*y 0.1 0.1 1.0 o, *
Bi-axial o*, 1.0 0.55 0.1 o,*
Same sign

o, 0.1 0.55 1.0 o*
Bi-axial
Opposite sign 7%, 0.1 0.55 0.1 o, *12
i.e. Shear

x RoM ply thickness fraction
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Examples:
For QI laminate strength under uni-axial loading in x direction :

¢ t .. Iy
E. =11.0x % +0.1x 2 4+ 0.1x 2% x &
t t t

* to t o t O .
O x :(1.0)(%4—0.1)(1}&_{_0.1)(91:_0))(0_1

etc.

Laminate Carpet Plots

Application :

— To provide preliminary design allowables for QI laminate
families

- To select suitable laminates to satisfy design property
requirements

Assumptions :

— Based on specific material system and specimen result specific

failure criteria and associated to the strength curves
Data :

— Static mechanical tension, compression and shear test results
for plain or notched or impacted specimens under room
temperature/dry, hot/wet, or cold/dry conditions

Limitations :
— Limited extrapolation of data for other material system

-
i wly e

AFE=t
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A

Method: :
! Tensile strength of QI
Read off plots to find required laminate layup or properties . g et
Longitudinal Modulus of QI . 3
'"Wt— W DGR gl MSuud i
5 laraecn wnd comprenisgn
i 0% AT Tamaly i
H

58
_-E £0 i I:E
- “I e i =
E [~ i ll-l:l# .- = E
- '-..H‘_ Ml "
P = z
J-""-_-_-_-_ i . 5
H:fﬁ; 2 E. { Ij 1 Gewien e aBE T
S B B 2 —— = % N Compression strength of QI
FE- . s
Shear Modulus of QI 2 E - =
518 N H § ™
¢ 0% g AT Elﬂ_ E

resneges = Shear strength of QI

Agl  Mgmge  Tamg
5 iy e
iy

G ny bmmt

ghaama o p 1) Kxnalsp wougae 3 11 praonddy ssulseisy jeanl f)

Slende b grgih Rmen!
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3. Strength Analysis of Laminate

- Laminate failure behavior is different from metal plate.

- Even though a ply is failed, the laminate is not failure because other plies
can endure the load by much higher stress.

- The inter-laminar separation should be analyzed by 3-D stress analysis.
Therefore this lecture does not treat this topic.

» Strength analysis of laminate will be discussed by the following calculation

example.
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* %

Exercise 1 : Perform strength analysis of the following Quasi-isotropic laminate with lay-up
seqguence (0°/45°/-45°/90°)s. The laminate is considered as quasi-isotropic manufactured by
laying-up with unidirectional carbon-epoxy prepreg ply.
Where axial load strength of N, =100N/mm is applied.
, and use the following mechanical properties..
, E;=140GPa, E,=10GPa, G,,=5GPa, v,,=0.3, ply thickness; t,=0.125mm,
X,=1500MPa, X.=1200MPa, Y,=50MPa, Y_=250MPa, S=70MPa.

AZ

t,=0.125mm X,y : laminated coordinate
1, 2 : material coordinate

-
>
>

\ 4
X

N, =100 N /mm




<Solution>
15t Step : Perform stress analysis by ply-by-ply of laminate.
- The Poisson ratio calculation uses the relationship of v,,/E, =v, /E,

(- Reduced compliance must be symmetric)
- Reduced stiffness is calculated as follows;

Q, =E, /(1-v,,v,,) =140/(1—0.3x0.021) =140.9KN / mm>

Q,, =E, /(1= v,v,;,) =10/(1-0.3x 0.021) =10.1KN / mm?’

Q,, =G, =5.0KN/mm°®

Q,, =V, E, I(L=v,,v,,) = (0.021x140) /(1 0.3% 0.021) = 3.0KN / mm?

1409 30 0
Q=| 30 101 O
0 0 50]

" Reduced stiffness matrix has the following relationship.

fl Qll Q12 O e1

where fi=0o =0 =f1,=T
f,=1Q, Q, 0 [e, 51_81152_82153_512_12
f, 0 0 Q,lle, 1=€1, €2=E&2, €3=€12 V1~2_-__
s

L (o 7k
i o, r .F
12X
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E1 Va E1 0
1- ViV 1- ViV (el )
v,E, E, o el
1-v,v, 1-v, v, i
0 0 G, |5

To obtain Q it should be transformed by ply angle.
If cos@d=m and sinfd=n,

F(— Y
Q11
Q22
Q33
Q12
Q13

Q23

m* n? 2m2n2 4m2n2

n4 m4 2m2n2

m?n®  m?n? —2m°n? m 222 81212
m?n?  m2n?  m%n? —4m?n Q12
m3n —mn3 mn3—m3n 2\ mn —m3n Q33
mn3 —m3n m3n—mn3 2 m3n—mn3

- The transformed reduced stiffness matrix with ply angle 0° can be obtained by using

the above

m=cos0’ =1 m?

n=sin0’

transformation matrix;

:1 m4 :1

=0 n2: Tl4=1

by -
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=ACHehl m°n® =0, 2m°n*=0, 4m°n*=0

m? -n®=1 m*+n*=1 m’n=0, mn3=0
m’n-mn®*=0, 2(m°n-mn®)=0

mn®-m®n=0, 2(mn®-m®n)=0

- Q4 =m*Q, +n*Q,, +2m’n’Q,, + 4m°n°Q,, = (1x140.9) + (0x10.1) + (0x 3.0) + (0x5.9)
=140.9KN /mm?* =Q,,
622 = sz

Q33 = Q33

le = Q12

Qs =Qu
623 =Qy
1409 3.0 O
~(@Q), =30 101 0 | KN/mm?

0 0 50
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- Similarly, the transformed reduced stiffness matrix with ply angle +45°
- can be obtained by using the above transformation matrix;

m = cos45° = m? =05 m*=0.25

1
\/Ea
1
\/E’

m?n® =0.25, 2m°n*=0.5, 4m°n’=1

n =sin45° = n>=05 n*=0.25

m° -n®=0, m*+n*=05 mn=025 mn*=025 m’n-mn®=0
2mn-mn®*)=0, mn*-m°’n=0, 2(mn®-m°n)=0
. Q,, = (0.25%x140.9) + (0.25x10.1) + (0.5 x 3.0) + (1x5.0) = 44.3KN/mm”°

Q,, = 44.3KN/mm?
Q,, = 36.3KN/mm?
Q,, = 34.3KN/mm?
Q,; = 32.7KN/mm?
Q,; = 32.7KN/mm?

AFE=t

st
2 X
i wly e
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(443 343 327
~(Q), =[343 443 327 |KN/mm’
32.7 327 363

- Similarly, the transformed reduced stiffness matrix with ply angle -45°and
90° can be obtained;

[ 443 343 -32.7]
Q) . =| 343 443 -32.7 KN/mm’
-327 -327 363 |

(101 30 0|
@Q),, =| 3.0 1409 0 |KN/mm?
0 0 50




To obtain the extensional stiffness matrix[A] of symmetric quasi-isotropic laminate, |

the transformed reduced stiffness matrix of each layer are arranged by the
following table form;

A Ao Asgi Ay As = Ay =0

Ply

0"

45

-45

90

90

-45

45

611 Q..
140.9 10.1
44.3 44.3
44.3 44.3
10.1 140.9
10.1 140.9
44.3 44.3
44.3 44.3
140.9 10.1

Q33

5.0
36.3
363.

5.0

5.0
36.3
3615

5.0

612
3.0
34.3
34.3
3.0
3.0
34.3
34.3

3.0

Qs

SN

-32.7

-32.7

32:7

Qus

BT

—-32.7

-32.7

327

tp

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125

Z_p
-0.4375
08120
-0.1875
-0.0625
+0.0625
0.1875

0.3125

0.4375

o
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N —_—
Aij - th(Qij )p
p=1
A, = 2{(0.125x 140.9),,, +(0.125 x 44.3)  , +(0.125x 44.3)  , +(0.125 x 10.1),,, }

= 59.9KN/mm
A,, =2x0.125 x {(10.1)

A, = 20.7KN/mm
A, = 18.7KN/mm

o +(44.3) 1, +(44.3),,, +(140.9),,,, } = 59.9KN/mm

A13 =0
A23 =0
509 187 O
SA=1187 599 0 [KN/mm
0 0 20.7 Where fx:er fy:O-yr fxy:Txy

N, Ay A, 0 ]|e
0¢= A12 Azz 0 e;

O O O A33 e;y
or
5 -1
€ Ay A, O N, a; a, 0 |IN,
e; = A12 Agz O O = a12 a22 O O ﬁ% :
e;y O O Aas O O O a33 O .: { 4] }
- —



0= i, iy~ Vi 00185

- A/ ~0.0185
G = A11A22 AS)
a,, = %33 00,7 =0.0483

=~ Ai/ — _0.0058
(Aquz - A122)
00185 -00058 0 ]

a=|-0.0058 0.0185 0 %<N/mm

0 0 00483
N, =100N/mm,N, =N, =0
(ec] [ 00185 -0.0058 0 | (N, =100
18T ~0.0058 0.0185 0 [x10*! o ¢}
e, | | O 0 0.0483 | 0
e =1850 x 10~°
e; =—580x107° |
B o 8
y N
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-To get each ply stress as to material axis (1: fiber direction-2: fiber perpendicular direction),
obtained strains as to laminate axis (x-y) are transformed to material axis.

L=

r 3\ B 2 2 1 r 3
e, m n mn e,
le, b=| n? m?>  —mn 1€

2 2
&) |- 2Zmn  2mn m°-—n 118y

1850
—580

s el A ex
1€, r=18,
C2) ()

0

"

N

L x107°

J

->The material axis strains of ply 2 and 7 is calculated as;

- 3\

e,] [05 05 0.5 [(1850] 635 P
‘e, =05 05 -05[-580;x10"°=4 635 :x10
&) -1 1 0 0 (= 2430 e

AFE=t
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->The material axis strains of ply 3 and 6 is calculated as;

(e, ] [05 05 -0.5](1850] 635 | .
‘e, +=|05 05 0.5 [{-580;x10° =+ 635 ;x10

-

e, | 1 -1 0 11 0 ) \2430)
->The material axis strains of ply 4 and 5 is calculated as;

(e,] (-580

{e, t=41850 ;x10°°

\elzz § 0 J

f, _Q11 Q, O ] € \
L r=1Qy Qp 0 |Je
f, 0 0 Qs

L J L

. i = ';:.-.*. ’ }
W e
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where
(1409 3.0 O |
[Q]=| 3.0 101 0 |[KN/mm’
| 0 0 50

-> Therefore stresses of ply 1 and 8 can be calculated as follows;

f,] [140.9 3.0 0 [ 180 259
f,l=] 30 101 0 [{-580}x10°x10°N/mm? ={—0.3\N/mm?
f,, 0 0 50/ 0 0

-> Stresses of ply 2 and 7 can be calculated as follows;

e — - r

f) 635 91
{f, =] Q | 635 x10°x10°N/mm?={ 8 {N/mm?’
\ f] | 1= 2430 _12
B
: i = :: ';:.-.*. /
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xaietm - -> Stresses of ply 3 and 6 can be calculated as follows;

r — T

f, 635 01
3 f, p= Q {635 :x10°x10°N/mm? =<{ 8 ‘N /mm?
fn) | 1(2430 12

-> Stresses of ply 1 and 8 can be calculated as follows;

() [ 1(-580 ~79
af,t=| Q 11850 yx10°x10°N/mm? = 17 ‘N/mm?®
\flz i 11 0 0

- Each ply stresses as to laminate axis (x-y) can be obtained by coordinate
transforming the obtained each ply stress as to material axis (1-2).

- p B qr p
f m*> n° -2mn |[ f,
f, b= n°> m? 2mn | f, ¢

2 2
|Ty] |Mn —-mn m®-n"|[f,

W |
—
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-> Stresses of ply 1 and 8 can be calculated as follows;

f.] 1 0 0]ff, 259

fl
fob={0 1 O{f,t=4f, =1-03N/mm’
f12

y
f 0 0 1|le, 0

Xy
-> Stresses of ply 2 and 7 can be calculated as follows;
f 05 05 -1} 91 62

X

f +=/05 05 1] 8 +=<38;N/mm°

y

f 05 -05 0 ||-12 42

Xy

-> Stresses of ply 3 and 6 can be calculated as follows;
f 05 05 1|91 62

X

f L=105 05 —-1K8'=< 38 'N/mm?

y

f 05 05 0 ||12 —42

Xy

-> Stresses of ply 4 and 5 can be calculated as follows;

f 0O 1 O0||-76 17
f,r=/1 0 017 ;=1:-76 N / mm?
f 0O 0 -1 O 0

AFE=t



* 2nd Step: Strength Analysis of Laminate

At the 15t Step, calculated each ply stresses as to 1-2 axis are as follows;

ply o i = Ts Fl.1 Fl.2 | Fl12 MOF (mode of failure)

1 o] 259| -0.3 o| 017| o0.01 0 LT
2 45 91 8 12| o006| 016| 017 S
3 -45 91 8 12| 006| 016]| 0.17 S
4 90 -76 17 0.06 | 0.34 0 TT
5 90 -76 17 o| 006| 034 0 TT
6 -45 91 8 12| 006| 016]| 0.17 S
7 45 91 8 12| o0o06| 016| 017

8 o] 259| -0.3 o| 017| o0.01 0 LT

* El: Failure Index = 1/RF
MOF: Mode of Failure

- Ply plane failure modes are as follows;

- Longitudinal Tension Mode (LT) : Fiber direction

Longitudinal Compression Mode(LC) : Fiber direction

Plane Shear Mode (S) :

- Transverse Tension Mode (TT) : Matrix direction
- Transverse Compression Mode (TC) : Matrix direction
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I ® Failure Criteria and Failure Index (F.1.)
(1) Maximum Stress Theory

- As to tensile stress :

f,/X, <1
f,/Y, <1
- As to compressive stress: | f,/X, <1
| f,/Y, <1
- As to shear stress : | f,/S <1

Failure Index(F.1.):

-If F1.1>1 ; Fiber failure
-If F1.2>1 ; Matrix failure

-if F1.12>1 ; Shear failure
(2) Maximum Strain Theory

el
) e1 < ext < 1
- As to tensile strain: " oor €y
e, <e, e,
<1
ey,t
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eS| 1
. . ey <leye o <1
- As to compressive strain : cl or x,c
e, < e
y.C e
2 <1
€.
e12
- As to shear strain : ‘912‘ <€ or o <1
S

Or Failure Index (F.I);,
- If F.1.1>1 : fiber directional failure
- If F1.2>1 : Matrix direction failure

- If F1.12>1 : Shear direction failure

(3) Tsai-Hill Theory
If Ply stresses satisfy the following criteria, the ply is not failed.

F.I.= LZ+£2+hz—L T <1
X Y S X N\Y
whereX =X, (orX,.), Y =Y,(or Y) ( this is determined by plus and minus sign
of f, and f, ). Absolute values of X, ,Y, are used.
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ZACH St (4) Tsai-Wu Theory
If Ply stresses satisfy the following criteria, the ply is not failed.

Fl=Ff +Ff,+F, f +F,f°+F,f,°+2F,ff, <1

where 1 1
11
Yt Yc

I:11 — 1/(xt + Xc)
Fzz — 1/(Yt +Yc)
Fy = 1/S°

. . 1
F, = FoyFuFp = Flz\/xtchth ~ _E/\/xtchth

« Where F, is decided by 2-axis experimental test.

* If value of F, is not available, letit be -1/2

. i = ';:.-.*. ’ }
W e
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- - Load Index (L.1.)

Z=AcHeul
The load required to produce the first ply failure (FPF) can be obtained from F. .,

- In case of Max Stress Theory,

Load Index = i

F.1.

- Incase of Max Strain Theory,

1
Load Index = ﬁ

- In this Exercise Max Stress theory is used, the axial load intensity of
N, =100N /mm is applied.
- F. Lsof ply 1 and 8 (0°) are obtained,
F.1.1=259/1500=0.17
F.1.2=]-0.3/250|=0.01
F.1.12=0

- F. I.s of ply 2 and 7(45°) are obtained,
F.1.1=91/1500=0.06

F.1.2=8/50=0.16 A
F.1.12=|-12/70|=0.17 ey
b R

AFE=t
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Aot - F. l.s of ply 3 and 6 (- 45°) are obtained,
F.1.1=91/1500=0.06
F.1.2=8/50=0.16

F.1.12=12/70=0.17

- F. lL.s of ply 4 and 5 (90°) are obtained,
F.1.1=]-76/1200|=0.06
F.1.2=17/50=0.34
F.1.12=0

- According to calculation results, max F. I. occurs at 90° ply.
l.e. FI1.2=0.34is TT failure mode .

* The load required to produce the first ply failure (FPF) using Max Stress Theory
can be obtained, and the FPF occurs at 90° plies (4 and 5) in TT mode!

N, =100/0.34 = 294N / mm € FPF Load




CHOSUN
UNIVERSITY
1946

5
2

el T

In the previous calculation, it was confirmed that The FPF occurs as TT mode at 90° plies

> 2nd Ply Failure

(ply 4 and 5).

After FPF at plies 4 and 5, the elastic material properties of the failed 90 ° such as

E: ,E. G,,are setas zero Then the transformed reduced stiffness matrix of the
degraded laminate are assumed using the 15t step calculation, and the extensional stiffness
matrix can be obtained again.

ply o Qu o Qs Q | % |
1 0 |140.9 | 10.1 5 3 0 0
2 45 | 443 | 443 | 36.3 | 343 | 327 | 327
3 45 | 443 | 443 | 36.3 | 34.3 | -32.7 | -32.7
4 90 0 0 0 0 0 0
5 90 0 0 0 0 0 0
6 45 | 443 | 443 | 443 | 343 | -32.7 | -32.7
7 45 | 443 | 443 | 443 | 343 | 32.7 | 327
8 0 | 1409 | 101 | 10.1 3 0 0




CHOSUN
UNIVERSITY

el T

o A, =2{0.125%140.9) ., +(0.125%x44.3) , , +(0.125x44.3) , » +(0.125x0) ,,, } = 57.4KN ., =

A,, =24.7KN /mm
A;; =19.4KN /mm
A, =17.9KN /mm

plyl

Az =0
Ay =0
57.4 179 0
S A=1179 247 0 [KN/mm
0 0 194

0.0225 -0.0163 0
a=A'=|-00163 00523 0 [1/(KN/mm)

0 0 0.0515
e ) [00225 —0063 O N —294] [ 6615
e, »=|—0.0163 0.0523 0 x107° 0 ={—4792x107°
ey | O 0 00515 0 0
P
b | = = } :
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-To get each ply stress as to material axis (1: fiber direction-2: fiber perpendicular direction),

obtained strains as to laminate axis (x-y) are transformed to material axis.

->The material axis strains of ply 1 and 8 (0°) are calculated as;

- N ( o 3 ( o A N
e, e e.| [ 6615
transform| | ° : "
e, 0= _ 1€, p=18, r=1-4792:x10
matrix : :
12 ey (&) L O

->The material axis strains of ply 2 and 7 (45°) are calculated as;

(e,] (05 05 0.5 6615) (912 )
le,+=405 05 —05{-4792{x10°=1{ 912 }x10°°
e,] (-1 1 0| 0 | 11407

->The material axis strains of ply 3 and 6 (- 45°) are calculated as;

(e,] (05 05 -0.5]|( 6615 912
‘e, t=40,5 05 05 }4-4792:x10° =+ 912 :x10°
€15 1 -1 0| O | 11407
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}_Jk__i ->The material axis strains of ply 4 and 5 (90°) are calculated as;
rel 1 (0 1 0] 6615 ) (—4892)
‘e, =41 0 0 (1—4792:x10° =4 6615 ;x10°°
&, (0 0 - 0 | 0

- Therefore stresses of ply 1 and 8 (0°) can be calculated as follows;

f, Q, Q, 0 (e ] [1409 30 0 |[ 6615 912
f,+=4Q, Q, 0 (e, t=| 30 101 0 [J-4792;x10°x10°=4-29:N/mm?
f, 0 0 Qe 0 0 50| O 0

- F. lLs of ply 1 and 8 (0°) are obtained using Max Stress Theory

F.1.1=912/1500=0.61

F.1.2=29/250=0.12
F.1.12=0

- Stresses and F.I. of ply 2 and 7 (45°) can be calculated as follows;

f, 912 131

f,t=4 Q ~912 +x10°x10° =< 12 :N/mm?

f, ~11407 ~57 s
K xips 8
f L o
Tdn ey e



CHOSUN
UNIVERSITY

R

EX3
ﬂ — —
T F.1.1=131/1500=0.09
F.1.2=12/50=0.24

F.1.12=|-57/70|=0.81

- Stresses and F.I. of ply 3 and 6 (- 45°) can be calculated as follows; -45°;

(f ] 1912 (131
s r=< Q 4 912 +x10°x107° =412 :N/mm’
| f ) ] 111407 | | 57 |

F.1.1=131/1500=0.09
F.1.2=12/50=0.24
F.1.12=57/70=0.81

- Stresses and F.I. of ply 4 and 5 (90°) can be calculated as follows;

f, — 4792 0
f,r=¢ 0 6615 $x107°x107° ={0 N /mm?
f, 0 0
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- According to calculation results, max F. |. occurs at £45° ply (2,3,6,7)

. e.

 The load required to produce the second ply failure using Max Stress Theory is
obtained can be obtained, and the SPF occurs at £45° plies (2,3,6,7) in S mode!

F.I. 12=0.81 is S failure mode.

e The failure load is;

<Summary>

At N, =294N /mm,

ply 4 and 5(90°) are completely failed.

N, =294/0.81=363N /mm

ply o f, f, f, F.I1 Fl2 | Fl12 | MOF
1 0 918 —29 0 0.61 | 0.12 0 LT

2 45 131 12 -57 | 0.09 | 0.24 | 0.81

3 —45 131 12 57 0.09 | 0.24 | 0.81

4 90 0 0 0 0 0 0

5 90 0 0 0 0 0 0

6 —45 131 12 57 0.09 | 0.24 | 0.81

7 45 131 12 57 | 0.09 | 0.24 | 0.81

8 0 918 —29 0 0.61 | 0.12 0 LT

o
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»Third-ply-failure
At N, =294/mm , FPF occurs at 90° ply as TT mode ,
At N, =363/mm  SPF occurs at £45° ply as S mode.

However 2 plies ( 0°) still are not failed yet.

Again, similarly to the previous SPF calculation procedure, material properties such as
E.E, G,, of £45° are assumed as ‘zero. Therefore after SPF, the transformed
Reduced stiffness matrix at failed plies (90°and +45°) are assumed as zero.

ply

o°

Qs

Qo

Ol

Ol

Ol

Ol

1

0

140.9

10.1

45

0

90

90

—45

45

OISO B~ WD

0
0
0
0
0
0

14

OCOlo|lo|lo|o |o

OO |l |lO|lO0O||O|]O|O WL

W o |lojlo|lOo|Oo|O |Ww

O |lolojlo|lo|]o |oOo |oOo

O |lolojlo|lo|]o |oOo |o

[
i, _::r..'-%
-.TI

A

=7

* g

o
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A= Z_tp((jij)p

A, = 2{(0.125x140.9) , , + (0.125%0) , , + (0.125x0) ., , + (0.125x0) ,, }

=35.2KN /mm

A,, =2.5KN /mm
A;; =1.3KN /mm

A, =0.8KN /mm
A;=0

Ay =0

(352 0.8 0]
A= 08 25 0 |[KN/mm
0 0 13|

[ 0.0286 —0.0092
-.a=[-0.0092 0.4029

0 0 07692

0
0

1/(KN / mm)
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ZACH S e’x 0.0286 —0.0092 0 N, =363 10382
1€y r=|-0.0092 0.4029 0 [x10° 0 =<-3340;x107°
€ xy 0 0 0.7692 0 0

» At Ply 1 and 8 (0° ply) the ply strains are;
(e;] [er] (10382
Je; r=4e +=14-13340;x10"°
e, e, 0

\Xy) " J

» At Ply 1and 8 (0° ply) the ply 0° stress are,

f, (e;] [1409 3.0 0 {10382 1453
f,>=[QKe; t=| 30 101 0 [{-3340{x10°x10°N/mm? =4 —3 :N/mm?
f, e, 0 0 50| 0 0

v F. |. can be obtained using Max Stress Failure Criteria.
F.1.1=1453/1500=0.97
F.1.2=0.12/50=0.01
F.1.12=0

AFE=t



<Summary>
Z NSl At N, =363N/mm, 90°, +£45° plies are completely failed, the ply stress and
F. I. are as follows;

F.I.1 FlL2 | Fl12 | MOF
0.97 | 0.01 LT
0 0

ply 0" fy f,
1 0 1453 -3
45
45
90
90
—45
45
0 1453 -3

—h
s
N

O |lOoOoO|]Oo|O |O |oO

1

(ool NI e ) BN G2 I BE - GO e
O |lo|lo|lo|o|o |o |o
O |lo|lo|lo|lo|o |o |o

0 0
0 0
0 0
0 0
0 0
9 0

0.97 | 0. LT

From the above table, max F. 1.=0.97 occurs at 1 and 8 ply (0°) as LT mod.
Therefore the 39 ply failure (TPF) load can be calculated as;

N, =363/0.97 =374N / mm
At this load the laminate is finally failed. — Last Ply Failure (LPF)!

o
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Therefore the laminate strength F is obtained using Max Stress Failure Criteria
when the ply is completely failed;

F.=N,/t=374/1.0=374N /mm’
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=
=adistm~ FPF: N, = 294N/mm,e, = 0.0185 x 294 x 10~° = 0.54%(". e, = a;,N )

SPE: N, =363n/mm,e, =0.0225x363x10° =0.82%

LPF: N, =374N/mm,e, =0.0286x374x10~° =1.07%
A (* where E, = i, t=1mm)
ayt
Shear mogle | 2PF at +45°
LPF at, LT mode
‘ 374
X 363 T E, =35KN/mm?
N /mm?
294 N
\ FPF at 90° transverse
tension(TT)mode
/— E, =54.1KN/mm’ x
. E, =44.4KN /mm?
0 0.54 0.82 1.07
0
. . . &, % . _ oo
Figure :Longitudinal tensile strength by complete ply failure mode and maximum 5 e/ }
stress theory at (0/45/-45/90)s AN
e
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Entes

88 186359 -00 |-00  ~00
59 598688 5.226-14 | ~0.0 |-11n
522614 206165 | 0.0 |-0.0

_ ~0.0 | 830E6 1.31E6
0 -0op ~00 |1.3ES 2176

|
=00 | 5.11E-7_ 5.11E7

|
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Prosz Dedoim..* o deloemation 11z
Press Fakae ' lo fadute anabin { Save SaveA:
Proes New o stad taw section
Press Bt to quit the application Exit

Hew | Open

A;: to match unit with Dj: to match unit with Engineering Properties of
solution — multiplying by 103 solution — multiplying by 106 || Laminate (extensional)
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Homework #1

Consider a (0/45/—45/90), laminate configuration. The plies are unidirectional
high strength carbon/epoxy of 0-125 mm thickness and have the same elastic
properties as those in the previous exercise.

Elzl‘iﬂ, .Eg: ].[:I:I G13=5kN.|rmm1. V11=B'3

The symmetric laminate configuration is shown in Fig. 5.20, and the ordinate
section properties are shown in Fig. 5.21.

Find the extensional stiffness A; and flexural stiffness D;; , and membrane
equivalent elastic constants and bending equivalent elastic constants :

E,, Ey,GXy,va,va, m,, m,
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W/// A r?zs____fi_vj__@i_-- ::
ANERY e s [ PE T ] ns

Yo [E7.z | wfmee] s
L '
[5] ~

Ply 1 JZE’E— """"""" 125
/— -—h—/ -

Fig. 5.20. Symmetric MOPL: quasi-isotropic (0/45/—-45/90),. Fig. 5.21. Ordinate values (mm): quasi-isotropic (0/45/-45/90),.

mid-plane

125

125
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_ (Solution)
=S The ply reduced stiffness matrix for this

material as obtained from Example 5.2 are

1409 3.0 0
Q=1 30 101 0 |kN/mm?®3
0 0 50

The transformed reduced stiffnesses have been determined previously for ply

angles of 0° and 90° in Example 5.6, and for ply angles of 45° and —45° in
Example 5.8; the results are given below:

1409 30 0

(@)= | 30 101 0 |kN/mm?
0 0 50
10-1 30 0

(Qoe=| 30 1409 0 |KN/mm’
0 0 50




4.3

34-3 327

kN/mm?

(Q)sse= | 343 44-3 32.7 | KN/mm®
32-7 327 363
443 343 -327
(Q)seo= | 343 443 —327
-327 =327 363

The transformed reduced stiffness terms for all the plies in the laminate are

given in Table 5.18.

Since the laminate is symmetric, then all the coupling terms B;; =0, so we
only need to calculate the extensional and bending, A; and Dj;, stiffness terms.




Table 5.18
Q; Values (kN/mm®) for a Symmetric MOPL: Quasi-isotropic (0/45/
!

—45/90),

Ply 6° Q11 O 02 Q1 Q13 Q2
1 0 140-9 10-1 5-0 3-0 0 0
2 45 44-3 44-3 36-3 34-3 327 32-7
3 —45 44-3 44-3 36-3 34-3 =327 =323
4 90 10-1 140-9 50 3-0 0 0
- 90 10-1 140-9 50 3-0 0 0
6 —45 44-3 4-3 36-3 34-3 —32-7T =327
7 45 44-3 44-3 36-3 34-3 32-7 327
8 0 140-9 10-1 5-0 3-0 0 0

* MOPL.: Multioriented Ply Laminate
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Table 5.19
Ordinate Values for a Symmetric MOPL:
(0/45/—45/90), (Basic dimensions: mm.)

Ply £ Z, (t,Z3 +1/12)
1 0125 —0-4375 0-024 1
2 0-125 =0:31235 0-0124
3 0-125 —0-1875 0-004 6
4 0-125 —0-0625 0-0007
5 0-125 0-0625 0-0007
6 0-125 0-1875 0-0046
7 0-125 0-3125 0-012 4
8 0-125 0-4375 0-0241

The ply thickness and ply centroidal values are obtained from Fig. 5.21, and
the required ordinate values, ¢, and (f,Z} + t,/12), for each ply are given in
Table 5.19. We can now determine the extensional and bending stiffnesses, A;
and Dy, as defined in egn (5.3).
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A;j terms
N —
Ay= 2, t,(O)p
p=1

From Table 5.19 we get the ¢, term, the ply thickness value for each ply, and
from Table 5.18 we get the Q;; term, the transformed reduced stiffness value
for each ply. We use these values for the plies in the lower half of the
laminate, in this case Plies 1 to 4, in the above expression for A; in turn and
then double the result to obtain the total laminate extensional stiffness value.
Thus,

Ay, =2{(0-125 X 1409, , + (0-125 X 44-3),,, + (0-125 X 44-3)p,. 5
+(0-125 X 10-1)pyy 4} = 59-9 kKN/mm

Az, =2{(0:125 X 10-1)py, , + (0-125 X 44-3)p, » + (0125 X 44-3),,
+ (0-125 X 140-9),, ,} = 59-9 kN/mm

A33 — 2{(0'125 X S'O)qu 1 + (0'125 X 36-3)Ply2 + (0‘125 X 36'3)p]y3
+ (0'125 X S.O)Piy 4} = 20'7 kN/mm

A]’z — 2{(0'125 X 3'0)[)!5. 1 + (0'125 X 34-3)?[?2 + (0‘125 X 34'3)1)]).3
+ (0'125 X 3'0)p]y 4} = 18-7 kN/mm

Az =2{(0-125 X 0)p, ; + (0-125 X 32-7)py,» + (0-125 X —32-7)py, 5
+(0-125 X 0)pyy 4} = 0

A23 —_ 2{(0'125 X 0)p|y 1 + (0' 125 X 32.7)?1)!2 + (0'125 X —32'7)Ply3
+ (0'125 X O)PIY 4} = 0
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The extensional stiffness terms A; may be written in a boxed matrix notation

form:
599 187 0
A= 187 599 0
0 0 207

kN/mm

We again note here that the shear couplmg terms sum to zero as the nonzero
positive contribution of the Q3 (or 05) in the product of rpQ13 (or £,0)
from the +45° plies cancel out with the nonzero negative terms from the
corresponding —45° ply contributions; the 0° and 90° plies have zero Q5 and

0, values.

Bij ferms

All these coupling terms will be zero because the laminate is symmetric about

its midplane.
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Dij terms

D; = 2_: (tpz-?) + fgflz)(Q_fj)p

From Table 5.19 we get the (7,22 + 3/12) term for each ply, and from Table
5.18 we get the Q;; term, the transformeed reduced stiffness value for each ply.
We use these values for the plies in the lower half of the laminate, in this case
Plies 1 to 4, in the above expression for D in turn and then double the result
to obtain the total laminate bending stiffness value. Thus,

D]] = 2{(0'0241 X 140-9)1’15’ 1 + (0'0124 X 44‘3)p|},2 + (0'0046 X 44.3)PI)'3
+ (0-0007 X 10-1),, 4} = 8-31 kN mm

22 = 2{(0'0241 X 10.1)?])(1 + (0'0124 X 44'3)p1y2 = (0'0046 X 44'3)”}'3
+ (0-0007 X 140-9)p,, .} = 2:19 kN mm

D33 = 2{(0'0241 X S.O)Plyl + (0'0124 X 36.3)?"}'2 + (0'0046 X 36’3)]:[},3
+ (0-0007 X 5-0)p, 4} = 1-48 kKN mm

D12 = 2{(0'0241 X 3'0)["3’1 o (0'0124 X 34‘3)1)1},2 + (0'0046 X 34“3)])“‘,3
+ (0'0007 X 3"0)[:]!, 4} — 132 k.N mm

D13 = 2{(0’0241 X 0)p|y1 + (0‘0124 X 32'7)1)1},2 + (0'0046 X _32"7)Ply3
+(0-0007 X 0)py, 4} = 0-51 kN mm

D23 = 2{(0'0241 X O)Plyl + (0‘0124 X 32'7)1:»]},2 + (0'0046 x —"32‘7)]);},3
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The bending stiffness terms written in a boxed matrix form are given as

831 1-32 0-51
D= {132 219 0-51 | kKNmm
0-51 0-51 1-48

We use eqn (5.5) to obtain the extensional compliances as the extensional
stiffness matrix is partially populated. Substituting A; for R; and g; for r; in
eqn (5.5), we get

A;=599
A, =599
Ay =207
A,=187

and AA = Ay Ay — A% = (59-9)(59-9) — 18-72 = 32383
ay = AnlAA = 59-9/3238-3 = 0-0185
ay = Ay /AA = 59-9/3238-3 = 0-0185
G33=1/As;=1/20-7 = 0-0483
Gy, = —Ap/AA = —187/3238-3 = —0-0058

Hence, the extensional compliance matrix is

0-0185 —0-0058 0
a= | —0-0058 0-0185 0 1/(kN/mm)
0 0 0-0483
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calculate the bending compliances. Substituting D;; for R; and d;; for r; in eqn
(5.4), we get
D, =831
Dy, =219
Dy, =148
D,=13
D,;=051
Dy =051
and

DD =D, DypD;;+2D;Dy3 D15 — Dzzﬂfa - Dsstz - D“ng,
= (8:31)(2:19)(1-48) + 2(1-32)(0-51)(0-51) — (2-19)(0-51)?
— (1-48)(1-32)% — (8-31)(0-51)* = 22:31

dy, = (DyDs; — DZ)/DD = {(2-19)(1-48) — (0-51)}/22-31 = 0-1336

dyy = (D Ds; — D%)/DD = {(8-31)(1-48) — (0-51)*}/22-31 = 0-539%6
dy;=(Dyy Dy — D3,)/DD = {(8-31)(2-19) — (1-32)*}/22-31 = 0-T376

dyp = (DD — D D) /DD = {{0-51)(0-51) — (1-32)(1-48) }/22-31 = 00759
dy3=(DyuDys — DuDy3)/DD = {{1-32)(0-51) — (2:19)(0-51)}/22-31 = —0-0199

dy3= (D103 — Dy D) (DD = {(1:32)(0:51) — (8:31)(0-51)}/22-31 = —0-1598
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Hence, the bending compliance matrix is

0-1336 -0-0759 -0-0199
d= | —0-0759  0-5396 —0-1598 | 1/(kN mm)
—-0-0199 -0-1598  0-7376

The laminate equivalent elastic constants are obtained from eqns (5.6) and
(5.7). The laminate thickness ¢ for this example is 1-0 (= 8 X 0-125) mm.

For the membrane mode, substituting the appropriate values into Eqns
(5.6), we get

E, =1/(tay;) =1/(1-0 X 0-0185) = 54-1 kN/mm*

E, =1/(tax)=1/(1-0 x 0-0185) = 54-1 kN/mm’

G,y = 1/(tas;) = 1/(1-0 X 0-0483) = 20-7 kN/mm’
Vg = —ayp/ay, = —(—0-0058)/0-0185 = 0-31
Vpe= =1/ = —(—0-0058)/0-0185 = 0-31
m, = —a;/a,, = 0/0-0185 =1
my,= —ay/a, =0/0-0185 =1




CHOSUN
UNIVERSITY

el T

For the bending mode, substituting the appropriate values into eqns (5.7), we
get
E. =12/(fd,,) = 12/(1-0° X 0-1336) = 89-8 kN/mm>
E, =12/(fdy)=12/(1-0° X 0-5396) = 22-2 kN/mm>
Gy, = 12/(£ds;) = 12/(1-0° X 0-7376) = 16-3 kN/mm>
Vi = —dy/d,; = —(—0-0759)/0-1336 = 0-57
Vyx = —d1p/dyp = —(—0-0759)/0-5396 = 0-14
m, = —ds/d,; = —(—0-0199)/0-1336 = 0-15
m, = —dj/dy, =—(—0-1598)/0-5396 =0-30

Thus, the stiffness characteristics of a symmetric quasi-isotropic laminate,
observed from this example, are:

(1) There are no membrane-bending coupling effects due to the laminate
symmetry about its midplane.

(2) There is only membrane isotropy; the conditions for which the laminate
membrane equivalent elastic constants must satisfy simultaneously for mem-

brane isotropy are:
E, =E,
G,,=E./[2(1+ v,)]

m, =m,=1
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The above three conditions are satisfied in this case, as in the membrane
mode:

E,=E,=54-1kN/mm’
The value for G,, = 20-7kN/mm” and
E./[2(1+ v,,)] = 54-1/[2(1+ 0-31)]
= 20-6 kN/mm?* = G,, (allowing for round-off)
Also, m,=m,=0 in this case, implying that there are no shear couplings
present. Hence, all the three isotropy conditions are satisfied simultaneously.

Alternatively, the laminate membrane isotropy conditions can be expressed
in terms of the extensional stiffness terms:

An=Apn
Ap= (An = Azz)l’z
Ap=Ap= 0

The above three conditions are satisfied simultaneously in this case as
A =A,»=185kN/mm; A;=20-7kN/mm and (A;;—A)/2=(599-
18-7)/2=20-6 kN/mm (calculated As;=20-7kN/mm, allowing for round-off);
and A3 =A,=0.




(3) There is no bending isotropy or orthotropy; the bending isotropy
conditions are not satisfied in this case, end there are bend-twist coupling
terms present, thereby destroying the bending orthotropy behaviour.

We thus see that a quasi-isotropic laminate will not behave completely in an
isotropic fashion. It is only the membrans stiffness which exhibits isotropic
behaviour, but in the bending mode there zre no isotropy charactenstics.




CHOSUN

EX1 ) ¢
zaicieta [Homework #2
Consider the cross-ply laminate (0/90), subjected to a positive moment
intensity M, =10 Nmm/mm. Where the plies are unidirectional high
strength carbon/epoxy, of 0.125mm thickness, and have the following
elastic properties as ; E; =140, E, =10, G,, = 5kN/mm?, v;, = 0.3

The ply reduced strengths for this material are;
X, = 1500, X_ = 1200, Y, =50, Y, = 250, S = 70N/mm?

The symmetric laminate configuration is shown in Fig. 5.14.
Find the FPF mode and load.

|

L L R
y
.0625 Ply 3 90° |

Z T—F-—=-—----—-- ,] 25 .
R ] mid-plane
X ! Ply 2 90° ‘
L U N

-.0625 1,‘125

Py 1 0 ‘
| S U u. S _
~1875 ,,'125 |
Fig. 5.14. Ordinate values (mm): (0/90), laminate. 5 e ¥
i wly e
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=SS | 140-9 30 O
Q= 3:0 10-1 0 | kN/mm®
0 0 50

The transformed reduced stiffnesses for a ply angle of 0° have been
previously determined in Example 5.2 where it was observed that the
transformed reduced stiffnesses and the corresponding reduced stiffnesses for a
0° ply angle are identical. Thus,

1409 30 0
()= | 30 10-1 0 | kN/mm?
0 0 50

The transformed reduced stiffness terms for a ply angle of 90° are obtained
from eqn (5.2) with

m = cos 90° = 0; m*=0; m*=0
n=sin90° = 1; ni=1z ‘=1
m*n®=0; 2m*n*=0; 4m*n*=0
m’—n*=-1

mt+nt=1

m’n=0; mn®=0;

m’n —mn’=0; 2(m’n —mn’) =0

mn®> —m’n = 0; 2(mn®> —m’n) =0




Substituting the appropriate trigonometric values and the reduced stiffness
values into eqn (5.2), we get
Qu =m'Qy+n'Qn+2m'n’Qp t 4m’n*Qss
= (0 X 140-9) + (1 X 10-1) + (0 3-0) + (0 X 5-0) = 10-1 kN/mm’ = Q,,

sz = n4Q11 ¥ m4Q22 ¥ 2m2n2Q12 + 4m2”2Q33

=(1X 140-9) + (0 X 10-1) +(0x3-0) + (0 x 5-0) = 1409 kN/mm? = G
st = mzann + mzﬂzsz - 2m2n2Q12 + (m2 - ”2)2Q33

= (U X 140-9) +(0x101) - (0x3:0)+ ([—1]2 X 5:0)=5:0 kN/mm? = Qs
le = mzanu + m2”2Q22 K (m4 * n4)Q1z - 4m2n2Q33

= (U X 140-9) + (0 X 10-1) + (l X 3-0) - (0% 5-0)=3-0 kKN/mm’ = 0,
0,5=m’nQy, — mn*Qq + (mn’ — m’n) Q1 + 2(mn’ — m’n) Qs

= (0% 140:9) - (0 10-1) + (0 3-0) + (0 X 5:0) =0 =0,

053 =mn*Qy —m’nQyp + (m’n — mn’)Qy, + 2(m’n — mn*) Qs
— (0X 140-9) = (0 X 10-1) + (0X 3-0) + (0 X 50) = 0= 0y




CHOSUN
UNIVERSITY

el T

i Table 5.11
Q; Values (kN/mm®) for a Symmetric MOPL: Cross-ply (0/90),
Py ¢ Ou O On 0On Qu On
i 0 1409 10-1 50 30 0 0
2 90 10-1 1409 50 30 0 0
3 90 10-1 1409 50 30 0 0
4 0 1409 101 50 30 0 0

Thus, the transformed reduced stiffness terms for the 90° ply are

10-1

30 0

Q)= | 30 1409 0

0

0 350

kN/mm?

It is seen, therefore, that, for a 90° fibre orientation, the cross-stiffnesses O,
and Q,, for a 0° ply angle change over in the transformed reduced stiffnesses of
a 90° ply angle, and the remaining terms Q,, and Q4; remain the same.

The transformed reduced stiffness terms for the 0° and 90° plies in the
four-ply laminate are given in Table 5.11.
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Since the laminate is symmetric, then all the coupling terms B;; =0, so we
only need to calculate the extensional and bending, A; and D;;, stiffness terms.
The ply thickness and ply centroidal values are obtained from Fig. 5.14, and
the required ordinate values, ¢, and (z,Z3 +#3/12), for each ply are given in
Table 5.12.

We are now in a position to determine the extensional and bending
stiffnesses, A;; and D;;, as defined in eqn (5.3).

A, terms
N -_—
Ay= 2 te(Qy)p
p=1

From Table 5.12 we get the ¢, term, the ply thickness value for each ply, and
from Table 5.11 we get the Q; term, the transformed reduced stiffness value
for each ply. We use these values for the plies in the lower half of the

Table 5.12
Ordinate Values for a Symmetric MOPL: Cross-ply
(0/90), (Basic dimensions: mm.)

Ply  6° t, zZ, (t,22 +13/12)
1 0 0-125 —0-1875 0-004 56
2 90 0-125 —0-062 5 0-000 65
3 90 0-125 0-062 5 0-000 65
4 0 0-125 0-1875 0-004 56




CHOSUN
UNIVERSITY

el T

laminate, in this case Plies 1 and 2, in the above expression for A; in turn and
then double the result to obtain the total laminate extensional stiffness. Thus,

Ay = 2{(0-125 X 140-9)p,, + (0-125 X 10-1)pyy} = 37-8 kN/mm
Az = 2{(0125 X 10-1)psy 1 + (0-125 X 140-9),} = 37-8 KN/mm
Ags = 2{(0-125 X 5-0)py 1 + (0-125 X 5-0)pny ) = 25 KN/mm

Ayz =2{(0-125 X 3-0)py , + (0-125 X 3-0)pn, .} = 1-5 kN/mm

A =Ax=0 as Q.;=0, =0 for the 0° and 90° plies

The extensional stiffness terms A; may be written in a boxed matrix notation

form:
378 15 0
A= 1.5 378 0 kN/mm
0 0 25
B;; terms

All these coupling terms will be zero, as noted earlier in Example 5.1, because
the laminate is symmetric about its midplane.
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D;; terms
N -
D; = Z (tpfi + tgﬂz)(Qﬁ)p
p=1

From Table 5.12 we get the (¢,Z2 +#,/12) term for each ply, and from Table
5.11 we get the Q;; term, the transformed reduced stiffness value for each ply.
We use these values for the plies in the lower half of the laminate, in this case
Plies 1 and 2, in the above expression for D;; in turn and then double the result
to obtain the total laminate bending stiffness.

Dy, =2{(0-004 56 X 140-9)p;,; +0-:004 5€ X 10-1)p,,,} = 1:2981 kN mm
Dy, =2{(0-004 56 X 10-1)p;, ; + (0-004 56 140-9)pyy 2} = 0-2753 kN mm
D35 =2{(0-004 56 X 5-0)pyy; + (10-:004 5€x 5:0)py, >} = 0-0521 kN mm
Dy, =2{(0-004 56 X 3-0)py, ; + (0-004 56X 3:0)py 2} = 0-0313 kN mm
Dy3=D,; =0 as Q3= 0, =0 for the 0° and 90° plies

The bending stiffness terms written in a boxed matrix form are given as

1-2981 0-0313 0
D= |0-0313 02753 0 kN mm
0 0 0-0521
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= AtHShal The laminate compliances can now be obtained from the laminate
stiffnesses. Since the laminate is uncoupled, and since the extensional and
bending stiffness matrices are partially populated, then the membrane and
bending compliances can be obtained from eqn (5.5).
Substituting A, for R; and a; for r; in eqn (5.5), we get

A, =378
Ay =378
A= 25
Ap= 15

AA = A Ay, — A2, = (37-8)(37-8) — 1-5% = 14266

and

a; = Ap/AA =37-8/1426-6 = 0-0265

ay = A, /AA = 37-8/1426-6 = 0-0265
as;=1/As;=1/2-5=0-4000
a;;=—A/AA =-1-5/1426-6 = —0-0011

Hence, the extensional compliance matrix is

0-0265 -0-0011 O
a= | —0-0011  0-0265 0 1/(kN/mm)
0 0 0-4000
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The bending compliance values are obtained from the bending stiffness
values, using eqn (5.5), and substituting D;; for R; and d;; for r; in eqn (5.5),

we get
D;, =1-2981
D,, = 0-2753
D;; = 0-0521
D, =0-0313
and

DD = D,,D,, — D%, = (1-2981)(0-2753) — (0-0313)* = 0-3564
dy, = D,,/DD = 0-2753/0-3564 = 0-77
dy, = D;,/DD = 1:2981/0-3564 = 3-64
dss=1/Ds3 =1/0-0521=19-19
dy,= —Dy,/DD = —0-0313/0-3564 = —0-09

Hence, the bending compliance matrix is

077 —0-09 0
d=|-009 364 0 |1/(kNmm)
0 0 1919
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The laminate equivalent elastic constants are obtained from eqns (5.6) and
(5.7). The laminate thickness ¢ for this example is 0-5 (=4 x 0-125) mm.
For the membrane mode, substituting the appropriate values into eqns (5.6),
we get
E, =1/(tay) = 1/(0-5 X 0-0265) = 75-5 kN/mm?
E, =1/(tay)=1/(0-5 X 0-0265) = 75-5 kN/mm?
G, = 1/(tas;) = 1/(0-5 X 0-4000) = 5-0 kN/mm?
Vg = —@p/a; = —(—0-0011)/0-0265 = 0-04
Vo = =13/ = —(—0-0011)/0-0265 = 0-04
My = —ay3/a, =0/0-0265 =0
my = —ay/ax=0/0-0265 =

For the bending mode, substituting the appropriate values into Eqns (5.7),
we get
E, =12/(fdy,)=12/(0-5 X 0-77) =124.7kN/mm?
E, =12/(fdy)=12/(0-5%3-64) = 26:4KkN/mm’
Gy = 12/(Pd) = 12/(0-5° X 19-19) = 5-0kN/mm?’
Vey = —dyp/dyy = —(—009)/0-77 =0-12
Vo = —dyp/dy = —(—0-09)/3:64 = 0-02
my=—dy3/dy; =0/0-77 =0
m, = —dy;/dy, = 0/3-64 =0
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Using the bending compliances, converted into units of N and mm, in eqn
(6.6), and with M, =10 N mm/mm, M, = M,, =0, we get

10 0 0

k.| 077 =009 0
-0-09 364 0 X107
0 0 19-19

giving
k, = 7700x10™° 1/mm
k, =-900 x10™° 1/mm
ky= 0

Xy

The strain induced by the curvatures is —zk, where z is the distance from the
midplane. So, on the bottom surface where z = —0-25 mm,

e, =—(-0-25)x 700X 107°= 1925 10"
e, = —(~0:25)x =900 X 107 = 225 x 10"
ey, = —(=025) X 0 =0

S A
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Fig. 6.5. Bending reference axes strains (X10~°) through laminate thickness.

and on the top surface where z =0-25,
e, = —(0-25) X 7700 x 10~ = —1925x 10°°
e, =—(0-25)x —900x 10°= 225 x10°°
ey = —(0:25) x 0 = 0

This 1s a linear strain distribution through the laminate thickness in all the four
plies, as shown in Fig. 6.5.
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From Fig. 6.5 we get the ordinate distances for each ply centroid and hence
the strains at the ply centroids:
Plyl 0° z=-0-1875:

ex =—(—0-1875)x 7700 x 10 *= 1444 x 10°
e, =—(—0-1875) x =900 X 10 °= —169 x 10°°
ey =—(—0-1875) X 0 = 0
Ply 2 90° z=-0-0625:
e, =—(—0-0625) x 7700 x 10 °= 481 x 10~°
ey =—(—0:0625) x —900 X 10" °= —56 x 10~°
exy = —(—0-0625) X 0 = 0
Ply3 90° z=0-0625:
e, =—(0-0625) x 7700 X 10™°= —481 x 10~°
e, =—(0-0625) x =900 10™°= 56 x10°¢
exy = —(0-0625) x 0 = 0

Ply4 0° z=0-1875:
e, = —(0-1875) X 7700 x 107°= —1444 x 10°¢
e, =—(0-1875) x =900 X 10 *= 169 x107°
exy, = —(0-1875) X 0 = 0

We then go back to the individual plies and transform the strains into the
material axes.
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Ply 1at (P

We can transform strains from the reference axes to the material axes for a (°
ply angle by inspection, as we saw in Example 6.1; effectively, there is no
change in the strain directions.

e, = 1444x107°
3 — _169 X 10—6

12 = 0

Ply 2 at 90°

Again, by inspection from the results in Example 6.1, for a ply angle of 90° the
reference axes direct strain values get transposed and the shear value changes
signs.

el = _56 X 10_6
e, = 481x107°
ep= 0

The ply material strains in Plies 3 and 4 will have values of opposing signs to
their corresponding ones in Plies 2 and 1, respectively, as evident by inspection

of Fig. 6.5.
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Next, we make use of eqn (6.10) to determine the ply stresses in the material
axes, having got the ply strains in the material axes. Substituting the values of
the ply reduced stiffnesses given in the beginning of this example (and
converting the units to N and mm), and the ply strains in the material axes, for
each ply, into eqn (6.10), we get:

Ply 1at 0°
1444 —-169 O
£ |14009 30 0
£ 30 101 0 | x107°x10°N/mm?
f|l O 0 50
giving
fi =203 N/mm’
f» =3 N/mm?®
f2=0

Using the maximum stress failure criterion:

F.I.1 =203/1500=0-14
FI.2 = 3/50 =0-06
FI 12=0




Ply 2 at 90°

-56 481 0
fl1409 31 0
fil 31 101 0 | x10°x 10°N/mm?
f12 0 0 5'0

giving

fi =—-6N/mm’
£, = 5N/mm’
fo= 0

Using the maximum stress failure criterion:

Ply 3at 90°

The ply stresses will be of opposing signs to those in the corresponding ply,

F.I. 1 =6/1200=0-01
FI2 =5/50 =0-10
FIL12=0
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fi = 6N/mm?
£, =—5N/mm?
f12= 0

Using the maximum stress failure criterion:

FI 1 =6/1500=0-01
F.I 2 =5/250 =0-02

FI 12=0
Ply 4 at 0°
The ply stresses will be of opposing signs to those in the corresponding ply,
Ply 1:

f, = =203 N/mm?
b ==3 N/mm?
f= 0

Using the maximum stress failure criterion:

FI.1 =203/1200=0-17
FI 2 = 3/250 =0-01
F.I.12=0
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=1 Ply Stresses (N/mm?) and Failure Indices: (0/90), with M, = 10 N mm/mm
e
Ply 6° fi A fiz FIL1 F.1.2 F.1.12 MOF
1 0 203 3 0 0-14 0-06 0 kT
p. 90 —6 5 0 0-01 0-10 0 TT
3 90 6 -5 0 0-01 0-02 0 TC
4 0 —203 -3 0 0-17 0-01 0 LC

A summary of the stress values (in the material axes) and their correspond-
ing F.I. for all the four plies in this cross-ply laminate configuration (0/90), for
a positive moment load M, = 10 N mm/mm is given in Table 6.3.

From the summary of results in Table 6.3 it is seen that the maximum failure
index occurs in the top ply, the 0° ply, Ply 4, in the longitudinal direction, F.I.
1=0-17, in the compression mode as the stress in this direction f; is
compressive. The correspondingly placed bottom ply, Ply 1, has stress values
of opposing signs to Ply 4, and the ply strength analyses give different F.I.
because of the different tensile and compressive strengths. Since the compres-
sive strength in the fibre direction is lower than its tensile strength, Ply 4 with a
compressive fibre stress is the critical one, rather than Ply 1 with a tensile fibre
stress.

So, with the applied positive moment M, = 10 N mm/mm, no ply failure has
yet occurred. Therefore, the load can be increased by a factor of 1/0-17 = 5-88
before FPF is predicted by the maximum stress theory. Hence, the FPF load is
10 X 5-88 = 58:8 N mm/mm and this will occur in the top ply, Ply 4: 0°, in the
LC MOF.
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This failure moment is at top skin of the 4t ply.
The hand calculation result (5.88x10-> MN-mm/mm) is at mid of the 4th
calculating at the top skin; 5.88x10-> x(0.1875/0.25)=4.42x10"
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Thermal Residual Stresses Calculation Example

Calculate laminate stiffnesses: Ay , By ,Dj

i

Determine ply free thermal strains: (eT|)p ,(P.Tz)p , 0

Transform thermal strains to reference axes :
T T T
(ek)p 5 (ey)p , (el

\

Evaluate ply equivalent free thermal loads ;
T T T
(ND 5 (NDY,  (ND),
T T T
(M,)p ,(My)p ,(M,y)p

\

Obtain laminate equivalent free thermal loads:
T T T
N 5 Ny 5 Ny
T T T
My y M y ; M Xy

\

Solve for laminate common strains in reference axes x-y

\

Calculate ply residual strains in reference axes x-y :

R R R
ex 7ey ?ex

Y

Transform ply residual strains to material axes 1-2:
R R R
e s €2 y € 12

Convert ply residual strains to stresses: f‘: ,f? ,f'?z

Fig. 7.15. Thermal residual stresses determination procedure.
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Determine the thermal residual stresses in a symmetric cross-ply laminate
(0/90), made from high strength carbon/epoxy unidirectional plies. The ply is
0-125 mm thick and the elastic and strength properties are the same as in

Example 6.1:
El = 140, Ez s 10, Glz =5 kN/mmz; Vi = 0-3
X,=1500; X.=1200; Y. =50 Y, =250; S =70 N/mm?

The coefficients of thermal expansion are:

a; = —0-3 X 10~ strain/°C
a,= 28 X 10~ °strain/°C

(Note that the coefficient of thermal expansion in the fibre direction is a
negative value.) Assume for the moment that the stress free temperature is the
same as the curing temperature of 125°C and the laminate is then cooled to an
ambient temperature of 25°C. Assume a constant temperature distribution
through the laminate thickness.

The laminate therefore experiences a temperature drop of AT =25°—

125° = —100°C and this is assumed to be constant in all the four plies as shown ; -
in Fig. 7.16. o A
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B & £ E ke k, ky
Nf | Ay Aw As | By By, By
N'yr A12 AZZ A23 E BIZ BZZ B‘Z3
Ny | Aw An 4w | By By By (7.24)
M; | By By, Bi | Dy Dy Dy
M-;- BIZ B22 BZ3 xi D12 DZZ D23
M:‘y B13 B23 B33 E' D13 D23 D33
where
N
A= 2 tp(Qu)P
p=1
N
3:122 th-P(Qif)p

bl
I
-

&
Il
1Mz

(.22 + £2/12)(0;),

p=1
and N7 is given by eqn (7.20):
N;r N Q_u le Q:13 i ex
N-; = 21 (tp) le sz st e;
ny - Qi Ox Qs; p_e;ry P
and M7 is given by eqn (7.22):
M;r N Q-n Q_lz Q:13 ‘—’I
MI = 21 *(tpz_p) le sz st e;:
MIy . Qi QOxn 0Ol er P
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Having obtained the laminate common deformation values given by the
above equation, the ply residual strains are then evaluated from eqn (7.8):

eR=e°—zk—eT

from which the ply residual stress can be determined by the ply stress—strain
relationship:

fR= QeR
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‘The iaminate configuration is symmetric about its midplane and so all the
coupling terms B, will be zero in eqn (7.24). Also, the temperature
distribution through the laminate thickness is constant and by careful examina-
tion of eqn (7.22), all the equivalent free thermal moments M™ will also be
zero (although this will be shown to be the case). Now, since the coupling
terms and the free thermal moments are both zero, then we need only consider
the membrane deformations and free thermal forces contributions, from eqn
(7.24). Hence, we only need the laminate membrane stiffnesses and
compliances.

The ply reduced stiffnesses Q;;, the transformed reduced stiffnesses for each
ply angle Q;, the membrane stiffnesses A, and the compliances a;, for this
cross-ply laminate have already been determined in Example 6.1 and are

1409 3.0 0O
O=| 30 101 0 | kN/mm?®
0 0 5-0

-100°C

Ply 4 0 -100°C

| Pw3 99T mig- | -w00°C

. plane
Ply 2 90 -100°C

Fig. 7.16. Constant temperature distribution in (0/90),.



1409 30 0
(Qe=| 30 10-1 0 |[kKN/mm?

0 0 50

101 30 0
(Q)or=| 30 1409 0 |kN/mm>

0 0 50

378 15 0
A=| 15 37-8 0 |kN/mm

0 0 25
0-0265 —0-0011 0
—0-0011  0-0265 0 1/(kN/mm)
0 0 0-4000
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Having obtained the laminate stiffnesses, the next step is to determine the
free thermal strain in the material axes, using eqn (7.1):

el=a; AT=-03x10"°%x-100= 30 x10°°¢
ex=a,AT= 28 x107°x —100= —2800 x 10~¢

The free thermal strains in the material axes have now got to be transformed
into the reference axes for each ply; using eqn (7.32):

€D, (), 0

(ex)p | m* n? —mn | .
(ey)s | n° m? mn

el 2mn —=2mn m*-—n?
( xy)p

Ply 1at 0°
m=cos0°=1 and n=sin0°=0
m2=1 n’=0
mn=_0 2mn =0

m?*—n®=1

Substituting the appropriate trigonometric values and the material axes free
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thermal strain values into the above equation, we get

30 —2800 O
(ex)p | 1 0 0
() | O 1 0| x10°¢
(e Iy)p 0 0 1 |

giving
(eN), = 30 x107°
(eD), = —2800x 10°°
(ex)p= 0

Note that in the case when the ply angle is 0° the material axes strains will
naturally be the same as the reference axes strains, as we have seen in previous
examples. However, the detailed calculations have been repeated here, for the
first occurence in this chapter, for completeness.
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Ply 2 at 90°

The transformation of strains for a 90° ply angle can be obtained by inspection as
we saw in previous examples, in which the orthogonal strains change directions
when transposing from the material axes to the reference axes, and the shear
strain changes sign (or can be alternatively computed by substituting appropri-
ate trigonometric values with m = cos 90° = 0 and n = sin 90° = 1 in eqn (7.32)):

(e¥), = —2800 x 107
€N, = 30 x107°
(e':y)p == 0

There is no need to perform the calculations on Plies 3 and 4, because the
laminate configuration and the temperature distribution about the laminate
midplane is symmetric. Thus, the free thermal strains in the reference axes for
Plies 1 and 4 with a ply angle of 0° will be the same, and the free thermal
strains in the material axes for Plies 2 and 3 with a ply angle of 90° will be the
same.

The equivalent free thermal loads can now be calculated for each ply. For
the ply equivalent free thermal forces (N7), and with a constant temperature
distribution, we make use of eqn (7.19):

NI Q:n le Q13 e;r
N; =(t,) (_212 922 st e;-
N ;ry P Qi QO Qs e er P

substituting the appropriate values into the above equation, we get:
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=AHSp)y 1 gt 0°
The free thermal strains in the reference axes for this ply, obtained earlier, are
(€D, =30x 107
(ey), = —2800 % 10~°
(er)p = 0

and the transformed reduced stiffnesses given at the beginning of this example
are, converted to units of N and mm:

1409 3.0 0
(Q)=| 30 101 0 |[x10°N/mm?
0 0 50

So the equivalent free thermal forces on this ply are
Ny 140-9 30 O 30

Ny | =0-125 3.0 101 0 || —2800 [ x10°x 10~
N s 0o o 5] o
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(N3)p, = —0-522 N/mm
(Ny), = —3-524 N/mm
(Nyy)p =0
Ply 2 at 90°

The free thermal strain in the reference axes for this ply, obtained earlier, are
(ex), =—2800x 107¢
(ey), = 30 x107°
(exy)p= 0

and the transformed reduced stiffnesses given at the beginning of this example
are, converted to units of N and mm:

101 30 0
(Q)oe-=| 30 1409 0 | x10°*N/mm>
0 0 50

So the equivalent free thermal forces on this ply are

NT 101 3.0 0 |[ —2800
NT | =0-125| 3.0 1409 0 30 | x10°x10-¢
Ny 1o 0 0 5 0
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(NT), =—3-524 N/mm
(NT), =—0-522N/mm
(N%),= 0

xy/p —

Due to the laminate configuration and temperature distribution symmetry
about the midplane, we only need perform computations for one half of the
laminate configuration, as the corresponding plies in the other half of the
laminate configuration will have identical values. In this case then, the
equivalent free thermal forces for Plies 1 and 4 with a ply angle of 0° will be
the same, and the equivalent free thermal forces for Plies 2 and 3 with a ply
angle of 90° will be the same.

The laminate equivalent free thermal forces is, then, the summation of all
the corresponding ply values, given by eqn (7.20) in this case of constant
temperature distribution. Because of the symmetry, we can sum all the
corresponding values in one half of the laminate and then double the result to
obtain the total values. Thus,

NI = 2{(”0'522)Ply1 + (—3-524)P,y2} = —8-092 N/mm
N;r == 2{(—3-524)P.y1 + (—0-522)P|y2} = —8-092 N/mm
N;:ry = 2{(0)Ply  + (O)Ply 2} =0
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Before proceeding to determine the laminate common strains, let us first

show that the equivalent free thermal moments are indeed zero as presumed,
due to the symmetry of the laminate configuration and temperature distribu-
tion. From eqn (7.21) or (7.22), giving the free thermal moments, we see that
we need the ordinate properties (t,Z,) for each ply. The ordinate properties
are shown in Fig. 7.17 and presented in Table 7.1.

The ply equivalent free thermal moments with a constant temperature
distribution are obtained, using eqn (7.21):

M;:r Q:u Q12 le e;r
M'; = _(tpfp) Qpn Qxn 0 er;
MIy P Q13 0Oz 0Ol er P
EIE | _Ply4 0| 125
y4 .0625 | El)_(_3_ _ 20_ o 125
- }' ! | mid-plane
X Ply 2 90°
o LSOO PR R S B o I
-0625 IS
y L E_’_ly_] . _0°
Z187% - — <125
N

Fig. 7.17. Ordinate properties (mm) in (0/90).
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Table 7.1
Ordinate Values for a Symmetric Cross-ply (0/90),
(Basic dimensions: mm.)

Ply 6° ts Z 12,
1 0 0125  -0-1875  —0-02344
2 90 0125  -0-0625 —-0-00781
3 9  0-125 0-062 5 0-007 81
4 0 0125 0-1875 0-023 44

Substituting the appropriate values into the above equation, we get:

Ply 1at 0°
The ordinate (¢,2,) value from Table 7.1 is —0-02344. The free thermal strain
in the reference axes for this ply, obtained earlier, are

€, = 30x10°°
(1), = —2800 x 10~

and the transformed reduced stiffnesses given at the beginning of this example
are, converted to units of N and mm:
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A hetul 14099 3.0 0
(@)=| 30 1001 0 |x10°N/mm>
0 0 50

So the equivalent free thermal moments on this ply are

MT 1409 30 0 ][ 30
Mj | =—(—0-02344)| 30 10-1 0 || —2800 | x 10* x 1075
My, o 0 0 5 0
giving
(My), =—0-098 N mm/mm
(My), =—0-661 N mm/mm
(My)p= 0
Ply 2 at 90°

The ordinate (¢,Z,) value from Table 7.1 is —0-00781. The free thermal strain
in the reference axes for this ply, obtained earlier, are

(ex), = —2800 x 107¢
(ey), = 30x107¢
(er)p = 10
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and the transformed reduced stiffnesses given at the beginning of this example
are, converted to units of N and mm:

10-1 30 0
(Q)or=| 30 1409 0 |x10°N/mm’
0 0 50

So the equivalent free thermal moments on this ply are

4 10-1 30 0 —2800
M; | =—(-0-00781)| 3-0 1409 0 30 x 10°> x 10~
My, |p 0 0 5 0
giving
(My), = —0-220 N mm/mm
(M3), = —0-033 N mm/mm
Ply 3 at 90°

By inspection, the ply equivalent free thermal moments will be of the same
magnitude, but of different sign to those of the corresponding Ply 2 at 90°. This
is so because the only difference in the computations between the correspond-
ing plies is the sign of the ordinate value (7,Z,), which changes sign for the
correspondingly placed plies about the midplane. Hence,
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(M), = 0-220 N mm/mm
(M;), = 0-033 N mm/mm
(MT), =0

xy/p

Ply 4at 0°
Again, by inspection, the equivalent free thermal moments for this ply will
have opposing signs to those of the corresponding ply below the midplane, Ply
1 at 0°. Hence,

(M), =0-098 N mm/mm

(M;), =0-661 N mm/mm

(M%), =0

xy/p

The laminate equivalent free thermal moments are then the summation of
all the corresponding ply values, given by eqn (7.22) in this case of constant
temperature distribution. So,

MI - (_0'098)p1y 1 + (‘“0’220)ply2 + (0.220)1:']3(3 + (0'098)p]y4 = 0

M;‘ - (_0'661)P}y 1 + (—0.033)1’1}(2 + (0'033)p|y3 + (0'661)P|y4 - 0

ML =0
- We have, therefore, shown numerically that, in symmetric laminate con-
figurations with a symmetric temperature distribution through the laminate
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X

EST T , . :
thickness, there are no net laminate equivalent free thermal moments. Hence,
since the coupling terms B; and the free thermal moments are both zero, then
eqn (7.24) simplifies to

o o o
x eY exy

A Ay Ap
Ap Aj
Ay Az Ass

S35
5

The laminate membrane common strains are, therefore, obtained by inverting
the above matrix:

NI NI N,

B0 <o xo
{
et
[3%]
LS
[
[~
2
(]
W
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The membrane compliances are given at the beginning of this example, and
substituting the appropriate values, and working in units of N and mm, we get

—-8-:092 —-8:092 0

(4 0-0265 -—-0-0011 0

es | —0-0011  0-0265 0 x 1073
e, | 0 0 0-4000
giving
ey =—206%x107°
ey =—206x107°
ew=0

These membrane common strains are constant through the laminate thickness.
Since there are no coupling terms and no thermal moments present, then all
the curvatures (k) are zero and so all the strains due to the curvature (—zk)
are also zero, i.e.

—zk,= —zk,= —zk,,=0

We then go back to the individual plies and obtain the residual strains in the
reference axes by using eqn (7.8):

ef"=e’—zk—e"
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Plies 1 and 4 at 0°

Recalling the free thermal strain values in the reference axes obtained earlier:
(D), =30%107°, (e),=—2800x 107°, (ex,),=0, and substituting the ap-
propriate values, we get

eR=e° — zk,—eT = (=206 —0—30) X 107 = —236 x 10~
e = €3 — zk, — el = (—206 — 0 — —2800) X 1075 =2594 X 10°
exy =0

Plies 2 and 3 at 90°

Recalling the free thermal strain values in the reference axes obtained earlier:
(el), = —2800 X 1075, (ey),=30%107°, (ex,),=0, and substituting the ap-
propriate values, we get
eR =e% — zk, — el = (=206 — 0 — —2800) x 107°=2594 x 10~°
eR =e5—zk,—e] =(—206 —0—30) X 10™°= —236 X 10~°
exy =0
The next step is to transform the residual strains from the reference axes x-y

to the material axes 1-2; this is generally done using eqn (7.33), but in the case
of 0° and 90° ply angles, these transformations can be done by inspection:
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Plies 1 and 4 at 0°
e =eR =-236x10"°
ey =ey =2594x107°
ep=en =0

Plies 2 and 3 at 90°

= —236x107°
= 2594 X 10~°

R _ R __
ep==¢e,y =0

ey =ey
R

es =e,

The ply residual stresses are finally obtained by the specially orthotropic ply
stress—strain relationship of eqn (7.34):

er ey ey
f? Qll Q12 0
210w 0x O
fs| O 0 Qs

The ply reduced stiffnesses have been given at the beginning of this example.
Note that the residual strains in the material axes for all the plies are the same,
and, therefore, the residual stresses in the material axes will also be the same,
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Hence, substituting the residual strain values, and converting all units to N and
mm, we get:

Plies 1 and 4 at 0° and Plies 2 and 3 at 90°

=236 2594 0

11409 3.0 0
= 30 10-1 0| x10°x10°¢
?2 0 0 5

giving
fT =—26 N/mm?
f3 = 26N/mm*
f= 0

The laminate equivalent coefficients of thermal expansion for this cross-ply
laminate configuration are obtained from eqn (7.30). In this case, there will be
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es =—206x10"°
e; =—206x10"°
exy= 0
and from eqn (7.30), with AT = —100, we get
o, = ex/AT = (=206 X 107°)/—100 = 2-06 x 10~ ® strain/°C
a, =ey/AT = (=206 X 107%)/—100 = 2-06 X 10~ strain/°C
Oy = €5,/ AT =0

The membrane equivalent coefficient of thermal expansion values show that
they are the same in the orthogonal x- and y-directions; this is as would be
expected because of the equal reinforcements in the 0° and 90° directions in a
cross-ply laminate. This is analogous to the equivalent membrane elastic
constants being the same in the x- and y-directions in a cross-ply laminate. This
implies that, as a result of a temperature change, the laminate as a whole will
deform by equal amounts in the x- and y-directions. Furthermore, «,, is zero,
as would be expected in a symmetric cross-ply laminate because of the
laminate orthotropy; this signifies that a temperature change will not induce
any shear coupling effect on the laminate, in that a direct deformation will not
cause an associated shear deformation, and vice versa. If the value of a,, were
nonzero, then a shear coupling affect would be present.
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zadel - Recall that we stipulated that, in the absence of external loads, a system o.
residual stresses should form a net equilibrating system of forces and moments.
It should be noted, however, that the summation of loads can only be
performed in a common direction for all the plies in a laminate. So, for
example, we cannot consider the residual stress in the material axes for the 0°
and 90° plies, as the fibre directions in each ply are different. We will,
therefore, have to obtain the ply residual stresses in the common reference
axes x-—Y.

The transformation of the ply residual stresses from the material axes to the
reference axes can be performed by using eqn (2.20) or by inspection for ply
angles of 9° and 90°. |

Plies 1 and 4 at 0°
In this case of a 0° ply angle, the reference axes and material axes stress values
are the same:

fR =fF =—-26 N/mm®

fy=f3= 26N/mm?

ny-_—ffiz 0
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Plies 2 and 3 at 90°

In the case of 90° ply angle, the reference axes and material axes direct stress
values change in the orthogonal direction, and the shear stress values changes
sign:

fx=fz= 26N/mm’
¥y =fr =—26 N/mm?
fa=fi= 0
The distribution of the residual stresses in the x-, y- and x—y directions in all
the four plies through the laminate thickness is shown in Fig. 7.18. Note that as
there are no bending deformations, the stresses across each ply are constant.
The net forces due to the residual stresses are the product of the residual

stress and the ply thickness. This gives the force per unit width of the section.
Since the stress across the ply is constant (as shown in Fig. 7.18), then the

-26 26
Ply 4 0° 26 -26
il ) T ——
Ply 3 90°
o T -—-‘—-|
Ply 2 90°
- ’ e ++—
Ply 1 0° | 26 -6
+
-26 . . 26 o
fx fy fxy=0

Fig. 7.18. Thermal residual stresses (N/mm?®) through thickness of (0/90)..
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resultant force will act at the ply centroid. It can be seen by inspection of Fig.
7.18 that the forces contributed by the residual stresses in Plies 1 and 4 cancel
out with the force contributions arising from the residual stresses of opposing
signs in Plies 2 and 3. For example, the net residual force in the x-direction,
NE, for all the plies, is

Ply 1: —26x0-125 = —3-3 N/mm
Ply2: 26x0-125= 3-3N/mm
Ply3: 26x%0-125= 3:3N/mm
Ply 4: —26 X 0-125 = —3-3 N/mm
Each of the ply forces acts at the respective ply centroid, as shown in Fig.

7.19. So the summation of all the forces in the x-direction due to the residual
stress is

NxR = (_3'3)Ply1 + (3‘3)P1y2 Bt (3'3)P1y3 + (_3'3)“5’4 =0

The moment of these residual forces about the midplane is, therefore, the
product of the magnitude of the residual force and the lever arm to the point
of line action of the force, which in this case is at the respective ply centroid,
taking into account the direction of the moment. The ply centroidal values are
taken from Fig. 7.17 and shown in Fig. 7.19. Now assuming that clockw1se
moment is positive, then residual momet about the midplane My, 0%
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MxR = (3'3 X 0‘1875)1:’[)! 1= (3'3 X 0'0625)p1y2 e (3'3 X 0'0625)p}y3 - (3'3 X 0'1875)Ply4 == 0

Therefore, as would have been expected, in the absence of external loads, a

system of residual stresses forms an equilibrating system of forces and
moments about the laminate midplane.

-3.3
Ply 4 0° -
o .1875 3.3
Flyal S0 _ mid-plane ) - _JFOGZS
o 4
Ply 2 90 - 1 10625
Ply 1 0° <-L 33
y P
—3 3

Fig. 7.19. Thermal residual forces (N/mm) in x-direction through thickness of (0/90)..
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* Hygroscopic Residual Stresses Calculation Example

Example 7.5

Determine the hygroscopic residual stresses in a symmetric cross-ply laminate
(0/90), made from high strength carbon/epoxy unidirectional plies. The ply is
0-125 mm thick and the elastic and strength properties are the same as in
Example 7.2:

El = 140, E2 = 10, 612 = 5 kN/mmz; Via = 0-3
X, = 1500; X.=1200; Y, = 50; Y. = 250; S =70 N/mm®

The coefficients of hygroscopic expansions are:
ﬁ] = 0'01
ﬁz =0-30

A constant moisture intake content distribution of m =0-5% is assumed to
occur in all the four plies through the laminate thickness, as shown in Fig.
7.24.

The laminate configuration is symmetric about its midplane and so all the
coupling terms B; will be zero in eqn (7.47). Also, since the moisture
distribution through the laminate thickness is constant and therefore symmetric
about the midplane, there will, therefore, be no equivalent free hygroscopic
moments induced (note that this was proved in Example 7.2 when considering
a symmetric laminate configuration with a symmetric temperature distribution
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The common state of strain in a laminate as a result of the hygroscopic
environment is given by adapting eqn (7.24), which will now give the
relationship between the free hygroscopic loads and the resulting common
deformations related by the laminate stiffnesses:

es e e i ke k, ky
N! | An Az As | By By By
N? Alz A22 A23 E Blz Bzz BZB
NH As; A,y Ay ' By, B,, B
A Bl e o I B A It} (7.47)
M)I(-I Bll Blz BI3 Dll D!Z D13

Mg B13 B23 B33 D13 D23 D33
where
N
Au = 2 'tP(QU)P
p=1
N -
Bu = _—tPEP(Qlj)P
pr=1
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and N" is given by eqn (7.44):
N? N Q11 Qu Q13 ei{
N;{ 2 (tp) Q12 sz Q23 e;{
N g e Q13 Q23 Q33 plL€ -

and M" is given by eqn (7.46):

M? Q11 Q12 Q13 e?
M? E (tpzp) le Q22 Q23 e?
Mg Q13 st Q33 P 32 P

Having obtained the laminate common deformation values given by the
above equation, the ply residual strains are then evaluated from eqn (7.41):

eR=e°—zk — e
from which the ply residual stress can be determined by the expression:

* = Qe




CHOSUN
UNIVERSITY
19

46 .
X

0.5 %
Py o 0.5 %
Fiy 90° | nid- 0.5%
ply2  go° | Plane 0 59,
Ply 1 0° 0.5%

Fig. 7.24. Constant moisture distribution in (0/90)..

about the midplane, in which the laminate equivalent free thermal moments,
similar to the equivalent free hygroscopic moment analyses, were shown to be
Zero).

As a result of this laminate and moisture content profile symmetry, the
coupling terms and the free hygroscopic moments will be zero as a conse-
quence, and therefore then, we need only be concerned with the membrane
related properties with the associated free hygroscopic forces contributions
from eqn (7.47).

The ply reduced stiffnesses Q;;, the transformed reduced stiffnesses for each
ply angle Q;, the membrane stiffnesses A;, and the compliances a;;, for this
cross-ply laminate have been presented earlier in Example 7.2 and are
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Sl 140-0 30 0
O=| 30 101 0 |kN/mm?
0 0 50
1409 3.0 0
(Q)w= 3.0 10-1 0 |kN/mm?
0 0 50
101 30 0
(Q)oor=| 3-0 1409 0 |kN/mm?
0 0 50
37.8 1.5 0

A=| 15 378 0 |kN/mm
0 0 25
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0-0265 —0-0011 0
a=|-00011 0-0265 0 1/(kN/mm)
0 0 0-4000

The free hygroscopic strain in the material axes, using eqn (7.40), and
observing that the moisture content m is in percentages, are

et = B,m = 0-01 X 0-005 = 0-05 X 1073
el = B,m =0-30 X 0-005 = 1-50 x 10>

The free hygroscopic strains in the material axes have now got to be
transformed into the reference axes for each ply, either by using the strain
transformations of eqn (7.32), in which the free thermal strains are substituted
for the free hygroscopic strains, or by inspection when the ply angle is 0°
or 90°: |

Ply 1at 0°
For a ply angle of 0°, the reference axes strains will naturally be the same as
the material axes strains, as shown in Example 7.2:
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(e, = (e}, =0-05x 1073
(e, =(e5), =1-50x 1077

(egr)p = (611{2)1:’ =0

Ply 2 at 90°

For a ply angle of 90°, the orthogonal strains change directions when
transposing from the material axes to the reference axes, and the shear strain
changes sign as we saw in Example 7.2:

(e"), = (ef), =1-50 x 107
(€M), = (et), = 0-05x 1073

(ex)p = (€12), =0

There is no need to perform the calculations on Plies 3 and 4 because the
laminate and the moisture distribution are symmetric about the midplane. So
the free hygroscopic strains in the reference axes for Plies 1 and 4 with a ply
angle of 0° will be the same, and the free hygroscopic strains in the material
axes for Plies 2 and 3 with a ply angle of 90° will be the same.

The equivalent free hygroscopic forces can now be calculated for each ply.
With a constant moisture distribution, we make use of eqn (7.43) to determine
the ply equivalent free hygroscopic forces N™:

NY Q:n (:212 (:213
N;_I = (tp) le 922 923
N::Jy P Qis O QOssle €xy _lp
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Substituting the appropriate values into the above equation, we get:

Ply 1at 0°
Tl{e free hygroscopic strain in the reference axes for this ply, obtained ealier,
are

(e, = 0-05 x 102

(e)), =1-50x 1073

(ex)p=0
and the transformed reduced stiffnesses given at the beginning of this example
are, converted to units of N and mm:

1409 30 0
(Qe=| 30 101 0 |x10°N/mm?
0 0 50

and so the equivalent free hygroscopic forces on this ply are

N 1409 3.0 0 |[ 0-05
N¥ | =0-125 3.0 101 0 || 1-50 | x 10° x 107
NE |, 0o o s5]lo

giving
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(N3, =1-443 N/mm
(N™), =1.913 N/mm
(N?y p=0

Ply 2 at 90°
The free hygroscopic strain in the reference axes for this ply, obtained earlier,
are

(e, =1-50 x 10°

(e), =0-05x 1073

(eg)p =0
and the transformed reduced stiffnesses given at the beginning of this example
are, converted to units of N and mm:

10-1 30 0
(Q)oo-=| 3-0 1409 0 |x10°N/mm?
0 0 5-0

and so the equivalent free hygroscopic forces on this ply are
N} 10-1 30 0 1-50
NE | =0-125 3.0 140-9 0 || 0-05 | x 10° x 1072
NE |, 0 0 5]Lo
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giving
(N3, =1:913 N/mm
(N¥), = 1-443 N/mm

(N)p =0

Due to the laminate configuration and moisture distribution symmetry about
the midplane, we only need consider one half of the laminate configuration, as
the corresponding plies in the top half of the laminate configuration will have
identical values. In this case then, the free hygroscopic forces for Plies 1 and 4
with a ply angle of 0° will be the same, and the free hygroscopic forces for Plies
2 and 3 with a ply angle of 90° will be the same.

The laminate equivalent free hygroscopic forces are then the summation of
all the corresponding ply values, given by eqn (7.44) in this case of constant
moisture distribution. Because of the symmetry, we can sum all the corres-
ponding values in one half of the laminate and then double the result to obtain
the total values. Thus,

N:}.:I = 2{(1'443)p]y 1 -+ (1‘913)}"1}'2} = 6'712 N/mm

N? = 2{(1‘913)p]y1 + (1-443)1’1}'2} =6-712 N/mm

NE P 2{(O)Ply1 o (O)Ply 2} =0
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As mentioned earlier in this example, there are no net laminate equivalent

free hygroscopic moments and the coupling terms B;; are zero, therefore then,
eqn (7.47) simplifies to

The laminate membrane common strains are, therefore, obtained by inverting
the above matrix:
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We then go back to the individual plies and obtain the residual strains in the
reference axes by using eqn (7.41):

eR=e°—zk —e"
Plies 1 and 4 at 0°
Recalling the free hygroscopic strain values in the reference axes obained

earlier: (ex), =0:05 % 107>, (e}"), =1-50 x 102 and (eX}), = 0, and substituting
the appropriate values, we get

ex =el—zk,—eX=(0-170-0—0-05) X 10™*=0-120 x 1073

eR =9 — zk, — e = (0-170 — 0 — 1-50) X 10> = —1-330 X 10~
ef}= 0
Plies 2 and 3 at 90°

Recalling the free hygroscopic strain values in the reference axes obtained
earlier: (e;)), =1-50 X 107>, (e;"), = 0-05 X 10> and (e};), =0, and substituting
the appropriate values, we get

eR =2 — zk, — e = (0-170 — 0 — 1-50) X 10> = —1-330 X 10~
eR = el — zk, — e = (0-170 — 0 — 0-05) X 107> = 0120 x 10~

efyr-()
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The transformation of the hygroscopically induced residual strains from the
reference axes x—y to the material axes 1-2 can be done by inspection for the
cases of 0° and 90° ply angles:

Plies 1 and 4 at 0°
el =e;=0-120x 1073
es =ey =—1-330x 1073
enp=¢én=0
Plies 2 and 3 at 90°
eR=eR= 0120x1073
ey =ex =—1-330x 1073
ep=en= 0
The ply residual stresses are finally obtained by the specially orthotropic ply
stress—strain relationship of eqn (7.34):

é&¢ & €
i | O O ©
‘I?{ Q12 Q22 0
el O 0 O
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The ply reduced stiffnesses have been given at the beginning of this example.
Note that since the residual strains in the material axes for all the plies are the
same, therefore, the residual stresses in the material axes will also be the same
as the plies are all of the same material having the same reduced stiffnesses.
Hence, substituting the residual strain values, and converting all units to N and
mm, we get:

Plies 1 and 4 at 0° and Plies 2 and 3 at 90°

01200 ~1-330 10

T | 140-9 30 0
5 30 101 0| x10°%x107°
2] O 0 5

giving
fi= 13N/mm?
f3 = —13 N/mm?
f2=0
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The ply reduced stiffnesses have been given at the beginning of this example.
Note that since the residual strains in the material axes for all the plies are the
same, therefore, the residual stresses in the material axes will also be the same
as the plies are all of the same material having the same reduced stiffnesses.
Hence, substituting the residual strain values, and converting all units to N and
mm, we get:

Plies 1 and 4 at 0° and Plies 2 and 3 at 90°

0-120 -1-330 O

2 | 140-9 30 O
3 30 101 0| x10°x107°
2] O 0 3

giving
fi= 13N/mm®
f3 =—13N/mm?*
f2=0
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The laminate membrane equivalent coefficients of hygroscopic expansion for
this cross-ply laminate configuration are obtained from eqn (7.50). In this case,
there will be no bending equivalent values because there are no bending
deformations induced. The common membrane strains obtained from above
are

es =0-170 x 1073
e; =0-170 x 1073
ey =0

and from eqn (7.50), with m = 0-005, we get
B, =e/m = (0-170 X 107%)/0-005 = 0-034
B, =ey/m = (0-170 X 107%)/0-005 = 0-034
By =en/m=0
Again, in the absence of external loads, a system of hygroscopically induced
residual stresses should form a net equilibrating system of forces and moments.
Note that we will have to obtain the ply residual stresses in the common

reference axes x—y to resolve the ply forces in the common direction. The
transformation of the ply residual stresses from the material axes to the

reference axes can be performed by using eqn (2.20) or by inspection for ply obile
angles of 0° and 90°. JeP¥
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Plies 1 and 4 at 0°
In this case of a 0° ply angle, the reference axes and material axes stress values

are the same:
e =fr= 13 N/mm*
3y =f5=—-13N/mm’
fa= =0

Plies 2 and 3 at 90°
In the case of a 90° ply angle, the reference axes and material axes direct stress
values change in the orthogonal directions and the shear stress values change
sign:

fx =f5=-13N/mm?

fy =ft= 13N/mm?

ff} =fe=

The distribution of the residual stresses in the x—, y— and x-y directions in

all the four plies through the laminate thickness is shown in Fig. 7.25. Note

that as there are no bending deformations, the stresses across each ply are
constant.

It can be seen by inspection of Fig. 7.25 that the forces contributed by the
residual stresses in Plies 1 and 4 cancel out with the force contributions arising
from the residual stresses of opposing signs in Plies 2 and 3. Also, the
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e
: 13 -13
Ply 4 0 13 N | 13
Ply 3 90°
Ply 2 90°
Ply 1 0° -13 \ | 13
13 -13
R R
fx fy fxy=0

Flg 7.25. Hygroscopic residual stresses (N/mm?) through thickness of (0/90)..

summation of moments of the equivalent forces about the laminate midplane
can also, by inspection, be seen to be zero.
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