
Constitutive Modeling Summary
(Fluid Part)

1. Cell complexes

When examing fluids, it is often be wise to split the space up in cells. If we then know the relation
between cells, we can perform calculations with them. This chapter examines the tricks we can apply
with such cells. We also examine the relation with the actual integral equations.

1.1 Introduction

1.1.1 What is constitutive modelling?

Let’s examine some mechanical system. The state of the system is described by configuration variables.
These are variables like position, velocity and acceleration. This state is influenced by the so-called source
terms. These are variables like force, stress and pressure.

Each of these two types of variables lives in its own realm. They can be equated with each other. By
using integral relations and such. That’s what we’ll look at first in this summary.

However, equating configuration variables to source terms is more difficult. To equate variables from
different realms, we need material parameters and other physical constants. The resulting relations form
the constitutive model.

1.1.2 Mathematical operators

Many equations apply on different kinds of object. Some equations apply on volumes, others on planes
and others on lines. Luckily, there are mathematical equations with which these equations can be related.
For example, the divergence theorem relates a vector field A on a surface to a scalar field div A on a
volume. It does this according to ∫

∂Ω

A · dS =
∫

Ω

div A dV. (1.1.1)

So the divergence operator div relates the space of surfaces HS to the space of volumes HV .
Similarly, according to Stokes’ theorem, the curl operator curl relates the space of lines HL to the
space of surfaces HL. Finally, the gradient operator grad relates the space of points HP to the space
of lines. This gives us the following mappings.

HP
grad−→ HL

curl−→ HS
div−→ HV . (1.1.2)

The above mapping is kind of special. When we map two operators in a row, we always get zero.
(Mathematically speaking, we say that the null space of one operator coincides with the range of the
other.) So we have

curl grad = 0 and div curl = 0. (1.1.3)

For this reason, the above sequence is called an exact sequence.
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1.2 Definitions

1.2.1 Cell complexes and dual complexes

Let’s consider the n-dimensional space Rn. We can divide this space in several p-cells, where p indicates
the dimension of the cell. For example, a point is a 0-cell, a line is a 1-cell, a surface is a 2-cell, a volume
is a 3-cell, and so on.

The collection of all the p-cells is called a (primal) cell complex. A cell complex is usually denoted by
K. We also define αp as t he number of p-cells in K.

There can also be a dual cell complex K̃ corresponding to a primal cell complex K. In this case, the
p-cells of K̃ lie in the (n− p)-cells of K, and vice verse. For example, in a 2-dimensional space (a plane),
the points (0-cells) of K̃ lie in the surfaces (2-cells) of K and vice verse. Also, the lines (1-cells) of K̃
cross the lines (1-cells) of K.

The p-cells in a cell complex K are usually numbered. This numbering can be done arbitrarily. However,
the numbering of the p-cells in a dual cell complex K̃ is not arbitrary. We just saw that p-cells in K̃
correspond to (n− p)-cells in K. These correspondings cells are (by convention) given the same number.

1.2.2 Faces and cofaces

Let’s examine a p-cell Q. (For example, a 2-cell, or a surface.) The faces of Q are the (p − 1)-cells
that form the boundary of Q. (So the faces of Q are the boundaries of Q.) The cofaces of Q are the
(p + 1)-cells that have Q as a face. (So the cofaces of Q are the objects which Q bounds.)

1.2.3 Chains and cochains

Let’s examine a cell complex K. The collection of all αp p-cells in K is called a p-chain. A collection of
only some p-cells is called a p-sub-chain. The boundary δC of a p-sub-chain C consists of all p−1-cells
which bound C. (More strictly speaking, it consists of all p− 1-cells which have exactly one item of C as
a coface.)

With each p-chain, we can associate a set of αp numbers/vectors (b1, b2, . . . , bαp
). The function that

assigns the numbers/vectors to the p-cells is called a p-cochain. Two p-cochains a(p) and b(p) can be
added up. To do this, you simply have to add up the individual elements. So

a(p) + b(p) = (a1 + b1, a2 + b2, . . . , aαp
+ bαp

). (1.2.1)

We can also take the integral over a certain p-chain, or p-sub-chain. To do this, we have to add up all
the elements in the corresponding co-chain. So we have∫

p

a(p) =
∑

ai. (1.2.2)

1.2.4 The incidence matrix and the coboundary operator

p-cells are usually also given an orientation. For 0-cells (points), this can be either inward or outward.
For 1-cells (lines), this can be in one direction along the line, or in the opposite direction. For 2-cells
(surfaces), this can be clockwise or counterclockwise. And so on.

These orientations are necessary to find the incidence coefficients e
(p+1),(p)
ij . To find them, we need to
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examine the i-th (p + 1)-cell and the j-th p-cell. The coefficients are then defined as

e
(p+1),(p)
ij =


0 if the p−cell is not a face of the (p + 1)−cell,
1 if the cells have the same orientation,

−1 if the cells have opposite orientation.

(1.2.3)

We can find the incidence coefficients for all combinations of (p + 1)-cells i and p-cells j. If we put all
these coefficients in an αp+1 × αp matrix, we have found the incidence matrix E(p+1),(p).

The incidence matrix allows us to generate (p + 1)-cochains from p-cochains. For example, we can say
that

b(p+1) = E(p+1),(p)a(p) = δa(p), (1.2.4)

where the δ, called the coboundary operator, is just another way of writing the above equation. We
find that the incidence matrix and the coboundary operator have some interesting properties. We can,
for example, multiply the matrices E(p+2),(p+1) and E(p+1),p. It can then be shown that

E(p+2),(p+1)E(p+1),(p)a(p) = E(p+2),(p)a(p) = 0(p+2), or δδa(p) = 0(p+2). (1.2.5)

So applying the coboundary operator twice always leads to the null cochain (the cochain filled with only
zeroes). This actually makes sense. Because we’re in fact finding the boundary of a boundary. Imagine
some arbitrary surface. Now take its boundary. (It’s a line.) This line doesn’t have any end points. So
the boundary of the boundary of the surface simply doesn’t exist. It works the same for objects in other
dimensions.

1.2.5 Coboundaries and cocycles

Let’s take a look at the coboundary operator more closely. Suppose we apply it on a (p − 1)-cochain
a(p−1). The resulting p-cochain bp = δa(p−1) is the so-called coboundary of a(p−1). In fact, we call any
p-cochain bp that is the coboundary of some (p− 1)-cochain a(p−1) a p-coboundary.

Some p-cochains b(p) have a zero coboundary. So δb(p) = 0(p+1). Such cochains are called cocycles. It
is interesting to note that any p-coboundaries bp is a cocycle. (This is because δbp = δδa(p−1) = 0(p+1).
We’ll see in the next paragraph why this holds.) However, not any cocycle is a coboundary.

Finally, we say that two p-cochains are cohomologous if their difference is a coboundary. So a(p) and
b(p) are cohomologous if there is a (p− 1)-cochain c(p−1) for which a(p) − b(p) = δc(p−1).

1.3 Connections to the real world

1.3.1 Again an exact sequence

Previously, we have seen that we can use incidence matrices (or equivalently, the coboundary operator)
to transform p-cochains to (p + 1)-cochains. We can, for example, transform 1-cochains, connected to
lines, to 2-cochains, which correspond to surface. So we can map HL → HS . Let’s visualize what other
mappings we can do. We then find that

HP
δ−→ HL

δ−→ HS
δ−→ HV . (1.3.1)

These mappings are exactly the same as the mappings we could do with grad, curl and div. So the
coboundary operator seems to be a good replacement for all the integral theorems. By the way, since
δδ = 0, the above sequence again is an exact sequence.

3



1.3.2 The connection with integrals

Let’s examine some cell complex. We can choose a p-sub-chain C in this path. (For example, a set
of connected lines.) We associate with this p-sub-chain, the p-cochain δa(p−1), where a(p−1) is some
(p− 1)− cochain. We can then integrate over the p-sub-chain C. It can then be shown that∫

C

δa(p−1) = δij =
∫

δC

a(p−1). (1.3.2)

δij is the so-called Kronecker delta. This important relation is called the (generalized) Stokes’
theorem. But what does this mean? Well, we can integrate over the sub-chain of δa(p−1). But we can
also integrate over the boundary of the sub-chain of a(p−1). And, according to the above theorem, both
ways give exactly the same result.

The generalized Stokes’ theorem is, as its name implies, a generalized version of many integral relations.
We can, for example, recall the gradient operator grad. It satisfies∫

C

(grad p) · ds = p(Cend)− p(Cbegin). (1.3.3)

This integral relation says the same as the generalized Stokes’ theorem for p = 1. We can examine δp
along a one-dimensional curve. We can also simply examine p at the endpoints of the curve. It gives the
same result.

Transforming other integral relations to integrals of sub-chains goes similar. For example, consider the
conservation law

d

dt

∫
Ω

φdΩ +
∫

δΩ

F dS =
∫

Ω

q dΩ. (1.3.4)

If we use cochains, then the above equation turns into

d

dt

∫
Ω

φ(3) +
∫

δΩ

F (2) =
∫

Ω

q(3) ⇒ d

dt
φ(3) + δF (2) = q(3). (1.3.5)

Note that we have used the generalized Stokes’ theorem on the middle part. After this, we were allowed
to remove the integral. The final equation has no integrals anymore. Nor is there any connection to the
volume Ω. So, we see that using cell complexes and cochains is a great way to get rid of integrals and
geometry. Since there is no

1.3.3 The Laplace equation

Now let’s consider the Laplace equation ∆φ, or equivalently, div grad φ. How can we transform this
equation? We can’t use δδφ, since that would simply give zero. (You may wonder why the Laplacian
does not give zero. This is because grad maps from points to lines, and div from surfaces to volumes.)
So how do we tackle this equation?

The trick lies in the dual complex. We saw that (in 3D space), lines correspond to surfaces, and points
correspond to volumes. So we can start with points. Then we use the grad operator to get lines. We then
move to the dual complex to get surfaces. After this, we use the div operator to get volumes. Finally, we
can move back to our original cell complex. We can display these mappings as

HP
grad−→ HL

curl−→ HS
div−→ HV

l∗ l∗ l∗ l∗

HṼ
div←− HS̃

curl←− HL̃

grad←− HP̃ .

(1.3.6)

In this mapping, every square corresponds to the Laplace operator. So in fact, ∆φ = ∗δ ∗ δ φ. The
so-called Hodge operator ∗ is used to transfer between the primal complex K and the dual complex
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K̃. A constitutive model is a model which maps between the primal complex and the dual complex.
So we find that the Hodge operator ∗ is, in fact, a constitutive model.
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2. Coordinates, vectors and tensors

To express properties like location in our world, we need coordinates. How do coordinates work? And
what fun things can we do with them? That’s what this chapter is about.

2.1 Coordinates and 1-vectors

2.1.1 Coordinate systems

Let’s consider an n-dimensional space. A coordinate system is a function X(x1, x2, . . . , xn), which
assigns to every point in space n numbers x1, x2, . . . , xn. These numbers are called the coordinates. A
point can have different representations in different coordinate systems.

Suppose we have a coordinate system. We can then draw coordinate lines. Coordinate lines are lines
for which n − 1 coordinates are fixed. As the non-fixed coordinate varies, a line is drawn. (Note that
these aren’t always straight lines.)

2.1.2 Base vectors

A coordinate system also has base vectors. Thse vectors are vectors tangent to the coordinate lines.
Together, they form the (covariant) basis of the system. The base vectors are defined as

e1 =
∂X
∂x1

, e2 =
∂X
∂x2

, . . . , en =
∂X
∂xn

. (2.1.1)

The base vectors can be different at different points in the coordinate system. Also, they do not necessarily
have length 1.

A covariant basis also has a corresponding contravariant basis (also known as the dual basis). Th
contravariant base vectors ej are defined such that

ej · ei =

{
0 if i 6= j,

1 if i = j.
(2.1.2)

Note that the contravariant basis is denoted by superscripts, while the covariant basis uses subscripts.
To find the contravariant basis, you could take the matrix of covariant base vectors [e1 . . . en]. If we
invert it, we get the matrix of contravariant base vectors.

2.1.3 Normal vectors

Suppose that we have two points A and B. We can indicate their relative position by a vector. We can
write down a vector a in the covariant basis as

a = a1e1 + a2e2 + . . . + anen =
n∑

i=1

aiei. (2.1.3)

The coefficients ai are called the contravariant coefficients, since they have a superscript. We could
also express the vector in the contravariant basis. We would then write it as

a = a1e1 + a2e2 + . . . + anen =
n∑

i=1

aiei. (2.1.4)
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The coefficient ai are the covariant coefficients, since they have a subscript. Of course, there is a
relation between these coefficients. By using the definition of the dual basis, we can find that

aj =
n∑

i=1

aiei · ej = a · ej =
n∑

i=1

aiei · ej. (2.1.5)

2.1.4 The Einstein summation convention

We just saw that, to express a vector, we needed to add up n values. For that, we could use dots . . . or
the summation sign

∑
. However, doing this every time could be a bit tiring. Therefore, from now on,

we will use the Einstein summation convention. When, in a single term, there is both a subscript
and an equal superscript, we make a summation. This means that

n∑
i=1

aiei means the same as aiei and
n∑

i=1

aiei means the same as aiei as well. (2.1.6)

That should save us some ink.

2.1.5 Change of coordinates

Let’s suppose we have a coordinate system X(x1, . . . , xn). However, we move to a new set of coordinates
x̃1, x̃2, . . . , x̃n. The functions x̃i = x̃i(x1, . . . , xn) are given. In this case, the new base vectors become

ẽk =
∂X
∂x̃k

=
∂X
∂xi

∂xi

∂x̃k
= ei

∂xi

∂x̃k
, and similarly, ek = ẽi

∂x̃i

∂xk
. (2.1.7)

It is important to note that we have used the Einstein summation convention in the above equation. So
keep in mind that the above equation actually is a sum.

We can also express any vector a in our new coordinates. We simply need to find the new coefficients ãi.
In this case, we have

a = akek = ak

(
ẽi

∂x̃i

∂xk

)
=

(
ak ∂x̃i

∂xk

)
ẽi = ãiẽi, which implies that ãi = ak ∂x̃i

∂xk
. (2.1.8)

And the transformation is complete.

2.2 Multi-vectors

2.2.1 2-vectors

We now know how to describe points (with three coordinates) and lines (with a vector). But how would
we describe a surface? For this, we use 2-vectors. We do this using the wedge operator ∧. Let’s
suppose we have two vectors a and b. Together, they can form the 2-vector (a ∧ b).

The two-vector is subject to several rules. The most important rules are

c1(a ∧ b) + c2(a ∧ b) = (c1 + c2)(a ∧ b), (2.2.1)
(a ∧ d) + (b ∧ d) = ((a + b) ∧ d), (2.2.2)

(ca ∧ b) = (a ∧ cb) = c(a ∧ b), (2.2.3)
(a ∧ b) = −(b ∧ a), (2.2.4)
(a ∧ a) = 0. (2.2.5)
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One way to think of the 2-vector (a ∧ b) is as the surface spanned by the two vectors a and b. It then
also makes sense why (a ∧ a) = 0. A single vector can’t span a surface by itself.

Let’s suppose that u = ae1 + be2 and v = ce1 + de2. We can then simplify (u ∧ v) to

((ae1+be2)∧(ce1+de2)) = ac(e1∧e1)+ad(e1∧e2)+bc(e2∧e1)+bd(e2∧e2) = (ad−bc)(e1∧e2). (2.2.6)

Another way to represent a surface, is by using the normal vector. Let’s examine the surface (e1, e2).
The normal vector of this surface is e1× e2 = e3. (Similarly, e2× e3 = e1 and e3× e1 = e2. So, instead
of taking the wedge operator, we could use the cross product to respresent surfaces. In this case, we
would also find that

u× v = (ae1 + be2)× (ce1 + de2) = (ad− bc)e3. (2.2.7)

We see that this matches with what we found earlier.

2.2.2 3-vectors

Just like a 2-vector represents a surface, so does a 3-vector represent a volume. We denote such a 3-vector
by (u ∧ v ∧w). There are rules for 3-vectors as well. The most important ones are

a(u ∧ v ∧w) + b(u′ ∧ v ∧w) = ((au + bu′) ∧ v ∧w), (2.2.8)
(u ∧ u ∧ v) = (u ∧ v ∧ u) = (v ∧ u ∧ u) = 0, (2.2.9)

(u ∧ v ∧w) = (w ∧ u ∧ v) = (v ∧w ∧ u) = −(w ∧ v ∧ u). (2.2.10)

Now let’s suppose u = ae1 + be2 + ce3, v = ke1 + le2 + me3 and v = pe1 + qe2 + ee3. We can then
simplify their wedge product to

(u ∧ v ∧w) = det

∣∣∣∣∣∣∣
a b c

k l m

p q r

∣∣∣∣∣∣∣ (e1 ∧ e2 ∧ e3). (2.2.11)

2.3 Tensors

2.3.1 Tensor definitions

Tensors can be used to transform one vector to another. For example, we can say that the tensor A
transforms vector a to vector b. We write this as b = Aa. We assume the tensor transforms vectors
linearly. So,

A(ca) = cAa and A(a + b) = Aa + Ab. (2.3.1)

Let’s suppose that we have b = Aa. The inverse of a tensor A (denoted by A−1) is defined such that
a = A−1b, for every a and b. The transpose of a vector A (denoted by AT ) is the vector which satisfies
b · Aa = a · AT b, for every a and b. If a tensor satisfies AT = A, then it is called symmetric. If
AT = −A, then it is anti-symmetric (also known as skew-symmetric). If we have AT = A−1, then
A is an orthogonal tensor. Finally, we define the identity tensor I as the tensor satisfying a = Ia, for
every a.

2.3.2 Adding coordinate systems

The rules of the previous paragraph don’t require any coordinate system. If we, however, do add a
coordinate system, then we can represent a tensor A as a matrix. You should be careful with this though,
as the matrix differs per coordinate system.
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Let’s suppose we know how a tensor A transforms vectors. How can we find the appropriate matrix? To
find that out, we examine b = Aa. Rewriting this, using the Einstein summation convention, gives

bjej = A
(
aiei

)
= ai (Aei) . (2.3.2)

Left-multiplying by the dual basis vector ek gives

bk = bjek · ej = ai
(
ek ·Aei

)
. (2.3.3)

We thus find that Ak
i (being the component of A in the k-th row and the i-th column) is

Ak
i = ek ·Aei. (2.3.4)

Note that we can now also write bk = Ak
i ai.

2.3.3 Change of variables

Let’s suppose we know all the coefficients Ak
i . But now we move to a new coordinate system, having

coordinates x̃1, x̃2, . . . , x̃n. Again, the functions x̃i = x̃i(x1, . . . , xn) are given. How can we find the new
components of the transformation matrix Ãk

i ?

To do this, we write Ãk
i as ẽkAẽi. We can then apply the change of base vector equation (2.1.7) for base

vectors. If we also work things out, we will find that

Ãk
i = ẽkAẽi =

(
el ∂xl

∂x̃k

)
A

(
ej

∂xj

∂x̃i

)
=

∂xl

∂x̃k

(
elAej

) ∂xj

∂x̃i
=

∂xl

∂x̃k

∂xj

∂x̃i
Al

j . (2.3.5)

The final relation above may look simple. But do remember that you need to sum up 9 individual parts
to find the single component Ãk

i , due to the summation convention. We could, of course, also reverse the
above relation. We then would have

Al
j =

∂x̃k

∂xl

∂x̃i

∂xj
Ãk

i . (2.3.6)
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3. Velocity gradients and stress tensors

It’s time to look at an actual constitutive model: the stress tensor. How can we relate it to a physical
phenomenon like velocity?

3.1 Indifferent vectors and tensors

3.1.1 Configuration and source variable notation

It’s time to turn our attention to some less abstract stuff. First let’s examine configuration variables (like
position and velocity). Suppose we have some point P . We can indicate the position of P by a vector x.
Similarly, the velocity of P is denoted by v = dx/dt = ẋ. These vectors (and all other vectors belonging
to configuration variables) live in the primal space. We can also add a coordinate system to our primal
space. We can then write a position as x = xiei and a velocity as v = viei.

Source variables (like forces f and stresses τ) are, however, something different. They live in the dual
space. For that reason, we can’t represent them by vectors. But instead, we use covectors. Luckily,
these covectors are quite similar to vectors. Only the indices have changed position. We should, for
example, write the force covector as f = fiei.

3.1.2 Links between primal and dual space

The question remains, how do we go from the primal space to the dual space? To do that, we use tensors.
An example is the stress tensor σ. This tensor relates a normal vector n (in the primal space) to a
stress covector f (in the dual space). It does this according to

f = σn. (3.1.1)

When we use coordinate systems, we can represent σ by a matrix. In this case we can also write that

fi = σijn
j . (3.1.2)

3.1.3 Indifferent vectors

The relation that f = σn does not depend on the coordinate system we use. In other words, if we change
coordinate systems, it should still be satisfied. That is, as long as the distances remain the same. (In
stretched space strange things occur.) So let’s examine such a (non-stretched) transformation. In fact,
let’s examine the worst transformation possible. Let’s consider

x∗ = Q(t)(x− z) + y(t), (3.1.3)

where x denotes the initial vector, and x∗ denotes the transformed vector. What does this transformation
do? Well, first it moves the origin of the coordinate system to z. Then the orthogonal transformation
matrix Q(t), which might even vary with time, causes things to rotate about point z. (It is important
that Q(t) is orthogonal. In non-orthogonal transformations, distances don’t remain the same.) Finally,
we move the whole system by a vector y(t).

Yes, it’s a scary transformation. Now let’s make a definition. We say that any vector a which satisfies

a∗ = Q(t)a (3.1.4)

is called an indifferent vector. A normal position vector x is not indifferent, since x∗ 6= Q(t)x. However,
a difference vector a = x2 − x1 is indifferent. To see why, we could insert it into our transformation
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(3.1.3). This would eventually give us

x∗2 − x∗1 = Q(t)(x2 − x2) ⇒ a∗ = Q(t)a. (3.1.5)

(The vectors y and z cancel out.) However, the velocity vector v is not indifferent. To see why, we could
differentiate equation (3.1.3) with respect to time t. This would then give us

v∗ = ẋ∗ = Qv + Q̇(x− z) + ẏ. (3.1.6)

(For simplicity we have written Q(t) as Q.) So v∗ 6= Qv.

3.1.4 Indifferent tensors

Tensors that map indifferent vectors onto indifferent vectors are called indifferent tensors. So if b and
a are indifferent vectors, and b = Aa, then the tensor A is indifferent. An indifferent tensor A also has a
corresponding indifferent cotensor A∗ satisfying b∗ = A∗a∗. Of course there is a relation between A and
A∗. To find this relation, we use

b∗ = Qb = QAa = QAQT a∗. (3.1.7)

Note that, in the last step, we have used a = QT a∗. Because Q is orthogonal, it satisfies QT = Q−1.
From the above equation follows that

A∗ = QAQT . (3.1.8)

3.2 Velocity properties

3.2.1 A vector gradient

Let’s examine a vector field a. We now define the gradient ∇a of a vector field a. It is the tensor which
converts a change in position x (written as dx) to a change in the vector a (denoted by da). So we have
da = ∇a dx.

If we use a 3D Cartesian coordinate system, we could write this in matrix form, according toδa1

δa2

δa3

 =


∂a1
∂x1

∂a1
∂x2

∂a1
∂x3

∂a2
∂x1

∂a2
∂x2

∂a2
∂x3

∂a3
∂x1

∂a3
∂x2

∂a3
∂x3


δx1

δx2

δx3

 . (3.2.1)

3.2.2 The velocity gradient and the rate of strain

The velocity gradient is denoted by ∇v. It satisfies

dv = ∇v dx and dv∗ = ∇v∗dx∗. (3.2.2)

We could ask ourselves, is ∇v an indifferent tensor? Well, it can be shown that

∇v∗ = Q ∇v QT + Q̇QT . (3.2.3)

Since ∇v∗ 6= Q ∇v QT , the velocity gradient is not an indifferent tensor.

Now let’s examine the rate of strain tensor D. It is defined as

D =
1
2

(
∇v + (∇v)T

)
. (3.2.4)
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In other words, the components of D are

Dij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (3.2.5)

The diagonal entries of D are called the normal strain rates. The non-diagonal entries are the shear
strain rates. By the way, it can be shown that ∇D∗ = Q ∇D QT . So the rate of strain tensor is
indifferent.

3.2.3 Rotation and vorticity

Similar to the rate of strain tensor, we can define the rate of rotation tensor Ω. It is given by

Ω =
1
2

(
∇v − (∇v)T

)
, or ωij =

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
. (3.2.6)

We can now also define the rotation vector ω as

ω = ω32e1 + ω13e2 + ω21e3 =


1
2

(
∂u3

∂x2 − ∂u2

∂x3

)
1
2

(
∂u1

∂x3 − ∂u3

∂x1

)
1
2

(
∂u2

∂x1 − ∂u1

∂x2

)


T

. (3.2.7)

Finally, the vorticity vector ξ is defined as ξ = 2ω = curl u.

3.3 The stress tensor

3.3.1 The total stress tensor

Now we turn our attention to the important stress tensor. It can be shown that the stress tensor σ is
indifferent. (The equation σ∗ = QσQT holds.) We can split σ up in two parts, being

σ = −pI + τ, (3.3.1)

where I is the identity tensor. (The identity tensor satisfies I∗ = QIQT = QQT = I.) The part
−pI represents the stresses due to compression of the fluid. (In fact, p is the pressure, so −p is the
compression.) The part τ is due to viscous stresses.

If we write σ like this, we call σ the total stress tensor. τ is the extra stress tensor and −pI is the
extra deviatoric part. There is a rule stating that adding and subtracting indifferent tensors also gives
indifferent tensors. Since both σ and I are indifferent, also τ must be indifferent.

3.3.2 The extra stress tensor

We know from experience that viscous stresses depend on the velocity v of the fluid. So we need to find
a constitutive model that relates τ to something related to velocity. We can not relate τ directly to v,
since v is not indifferent. The velocity gradient ∇v is not indifferent either. However, the rate of strain
tensor D is indifferent. For that reason, we generally say that g(τ) = f(D), with f and g functions.
These functions depend on the type of fluid.

Let’s look at the stress-strain behaviour of the fluid. If it is isotropic (the same in all directions) and
linear, then τ only depends on two parameters. In this case, the so-called linear isotropic (Newtonian)
stress-strain relation applies. It states that

τ = λ(div u)I + 2µD. (3.3.2)

12



The variable µ is the viscosity. This viscosity depends on the composition of the gas, the pressure p
and the temperature T . Luckily, for T < 3000K, the dependence on pressure is negligible. In that case,
Sutherland’s formula holds. It states that

CT 3/2

T + S
, (3.3.3)

where C = 1.458 · 10−6Pa sK1/2 and S = 110.4K.

So, we eventually find that the stress tensor can be represented by

σ = −pI + λ(div u)I + 2µD. (3.3.4)
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4. The conservation laws

Very important in fluid dynamics are the three conservation laws, also known as the Navier Stokes
equations. Let’s see how they are derived, and how we can write them.

4.1 Two ways to describe fluids

4.1.1 Describing fluids

When describing fluids, we usually examine a small piece of fluid, called a fluid packet. There are,
however, two ways to represent a packet.

In the Lagrangian description, the fluid properties (like density, temperature, and such) are attached
to the packet. On top of that, the packet has a position vector x to indicate its position.

In the Eulerian description, the fluid properties are attached to the position vector. So, if we have a
position vector x, then we know the properties of the fluid packet x points to.

In solid mechanics, the Lagrangian description is more convenient. In fluid mechanics, however, we
usually use the Eulerian description.

4.1.2 Transforming between descriptions

There are several conservation laws. There are conservation of mass, conservation of momentum
and conservation of energy. In the Lagrangian description, these three laws are described by the
equations

dm

dt
= 0,

d

dt

(
dx
dt

)
= F and

dE

dt
=

dQ

dt
+

dW

dt
. (4.1.1)

m denotes mass, F the external forces, E the energy, Q the added heat and W the work done.

These laws aren’t the same in the Eulerian description. This is because in the Lagrangian description,
the position vector x changes with time. To find out how to transform these laws, we examine some
property Φ(t, x1, x2, x3). The time derivative of this property is given by

dΦ
dt

=
∂Φ
∂t

+
∂Φ
∂x1

dx1

dt
+

∂Φ
∂x2

dx2

dt
+

∂Φ
∂x3

dx3

dt
=

∂Φ
∂t

+ ui ∂Φ
∂xi

=
∂Φ
∂t

+ u · (∇Φ). (4.1.2)

So we see that, to transform the laws to the Eulerian description, we have to use

D

Dt
=

∂

∂t
+ u · ∇. (4.1.3)

This derivative D/Dt is called the Lagrangian time derivative or the material time derivative.
(Do not confuse it with the rate of strain tensor D.)

Now we know what to do with the time-derivative of a normal scalar. But what about time-derivatives of
integrals? We often integrate over volumes. However, a volume in Lagrangian space (consisting of a lot
of fluid packets) can change shape. This is rather troubling. Luckily, there is the Reynolds transport
theorem. It states that, for some variable φ, we have

d

dt

∫
V

Φ dV =
∫

V

(
DΦ
Dt

+ Φ∇u
)

dV. (4.1.4)

Now we also know what to do with time-derivatives of integrals.
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4.2 Conservation of mass

4.2.1 Derivation of the equation

With what we’ve just learned, let’s derive the conservation laws. First, we examine conservation of mass.
It states that the total mass doesn’t change. To find the total mass, we integrate over the density. This
gives us

dm

dt
=

d

dt

∫
V

ρ dV =
∫

V

(
Dρ

Dt
+ ρ∇u

)
dV = 0. (4.2.1)

This must hold for every volume. Therefore, the part within the integral must be zero. So,

Dρ

Dt
+∇u =

∂ρ

∂t
+ u · (∇ρ) + ρ∇u = 0. (4.2.2)

This can further be simplified to
∂ρ

∂t
+∇(ρu) = 0. (4.2.3)

This equation is known as the conservation of mass equation.

4.3 Conservation of linear momentum

4.3.1 Derivation of the equation

Now let’s consider the law of linear momentum. The time rate of change of linear momentum in a
direction ui must equal the force applied in that direction. We thus have

d

dt

∫
V

(ρui)dV =
∫

V

(
D(ρui)

dt
+ ρui∇u

)
dV =

∫
V

(
∂(ρui)

∂t
+ u · (∇(ρui)) + ρui∇u

)
dV =

∫
V

f i dV,

(4.3.1)
Again, this must hold for every volume. So we can get rid of the integral. We can then also rewrite it to

∂(ρui)
∂t

+ uiu · (∇ρ) + ρu · (∇ui) + ρui∇u =
∂(ρui)

∂t
+∇(ρuiu) = f . (4.3.2)

Working this out further, we get

ρ
∂ui

∂t
+ ui ∂ρ

∂t
+ ui∇(ρu) + ρu · ∇ui = fi. (4.3.3)

Thanks to conservation of mass, the two middle terms cancel. We remain with

ρ
∂ui

∂t
+ ρu · ∇ui = fi. (4.3.4)

This equation is known as the conservation of linear momentum equation.

4.3.2 The force time split up

The equation of the previous paragraph looked quite simple. However, we haven’t looked at the force per
unit volume f yet. (Or equivalently, at its component fi.) So let’s do that now.

The force per unit volume is made up out of a body force (per unit volume fb and a surface force (per
unit area) fs. This surface force has to be transformed to a force per unit volume as well, if we want to
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apply it in our equation. By using the stress tensor, we find that fs = σn = (−pI + τ)n. It can then be
shown that the force per unit volume due to fs is given by −∇p +∇τ . This eventually gives us

ρ
∂ui

∂t
+ ρu · ∇ui = fbi

− ∂p

∂xi
+

∂τij

∂xi
. (4.3.5)

Note that we have used the summation convention in the last term. By the way, we have

τij = λ(∇u)δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
. (4.3.6)

4.3.3 Variants of the equation

An incompressible flow is a flow in which fluid elements don’t change in volume. This implies that
∇u = 0. It is often also assumed that ρ = ρ∞ = constant as well. If we combine these data with
equations (4.3.5) and (4.3.6), we eventually find that

ρ∞
∂ui

∂t
+ ρ∞u · ∇ui = fbi

− ∂p

∂xi
+∇2ui. (4.3.7)

The above equation represents only one component of the linear momentum equation. We could put the
above equation back into its general vector form. Let’s do that, and rewrite it a bit, by bringing in the
vorticity vector ξ. (Okay, we rewrite it a lot.) We then get

ρ∞
∂u
∂t

+∇
(

1
2
ρ∞u2

)
= fb −∇p + u× ξ + µ∇2u. (4.3.8)

This is called the Lamb-Gromeka equation. Now let’s assume that the flow is steady (∂u/∂t = 0),
there is conservative body force fb (there is a function φ satisfying fb = ∇f) and the flow is inviscid
(µ = 0). The above equation then simplifies to

∇H(x) = ρ∞u× ξ, where H(x) = ∇
(

1
2
ρ∞u2 + p− φ

)
. (4.3.9)

Now let’s examine a curve C in space, along which H(x) remains constant, and thus u × ξ = 0. (For
example, a curve along which u = 0, ξ = 0, or where u and ξ are parallel.) In this case, along the curve
C, the above equation simplifies to

1
2
ρ∞u2 + p− φ = constant. (4.3.10)

You might know this equation. (In case you don’t, it’s called Bernoulli’s equation.)

4.4 Conservation of energy

4.4.1 The basic conservation of energy equation

It is time to examine conservation of energy. To find a relation for energy, we examine a small fluid
packet. This packet has a kinetic energy per unit mass of 1

2u
2 and an internal energy per unit

mass of e. So the total energy per unit mass is

E =
1
2
u2 + e. (4.4.1)
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Now let’s examine a very small volume. The total energy is given by mE. The change of energy depends
on the heat created Q and the work done W . So we have

d(mE)
dt

=
dQ

dt
+

dW

dt
(4.4.2)

We know that dm/dt = 0. Also, m = ρV . This turns the above equation into

ρV
dE

dt
=

dQ

dt
+

dW

dt
⇒ ρ

dE

dt
=

dq

dt
+

dw

dt
, (4.4.3)

where q is the heat added per unit volume and w is the work done per unit volume. There is just one
slight problem. The above equation is in the Lagrangian description. To transform it to the Eulerian
description, we need to use the material derivative. We thus have

ρ
DE

Dt
=

Dq

Dt
+

Dw

Dt
. (4.4.4)

4.4.2 The work done

Let’s take a closer look at the work W done. We know that work is force times distance. So dW = f ·dx.
It follows that

dW/dt = f · dx
dt

= f · v. (4.4.5)

The work, however, is done at the boundary of the volume. It is caused by surface forces fs = σn. If we
transform these surface forces to something having to do with volumes, we eventually find that

Dw

Dt
= ∇(σu). (4.4.6)

4.4.3 The heat added

Now let’s turn our attention to the heat added. This is a bit more difficult, since there are two ways of
adding heat. We can add a certain amount of heat per unit mass qm over the entire volume. The heat
per unit volume added then becomes ρqm. (Note that qm is a scalar.)

We can, however, also add heat per unit area qs, also known as heat flow. (This time qs is a vector.)
This heat flow is likely to depend on the temperature gradient ∇T . A temperature difference is, however,
a configuration variable, and is defined along a line. Heat flow is a source variable (it changes the
configuration) and is defined through a surface. We thus need a constitutive model connecting the two.
The most common method is Fourier’s law. It states that

q̇s = −κ∇T, (4.4.7)

where κ is a tensor. (The minus sign is present, because heat flow is defined to flow along negative
temperature gradients.) If the heat flow properties are isotropic (the same in all directions), then κ = κ̄I,
with κ̄ a constant. The relation q̇s = −κ̄∇T then also holds.

The heat flow per unit area needs to be converted to a quantity per unit volume. Once we have done
that, we can find that

Dq

dt
= ρq̇m +∇ · (κ∇T ). (4.4.8)
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4.4.4 The final energy equation

Let’s put all the terms we found together. We then get that

ρ
DE

Dt
= ρq̇m +∇ · (κ∇T − pu + τu). (4.4.9)

With quite some manipulation, we could also rewrite this equation to

ρ
De

Dt
= −p∇u +∇ · (κ∇T ) + Φ. (4.4.10)

The variable Φ is known as the Rayleigh dissipation function and is given by

Φ = ∇ · (τu)− u · (∇τ). (4.4.11)

4.4.5 Fixing the gaps

So, now we’ve derived all three conservation laws. A bit of counting, however, would show that we have
more unknowns then equations. So we need a few more equations. One of these equations relates internal
energy and temperature. It states that

e = cV T, (4.4.12)

where cV is the specific heat at constant volume. The other equation is the famous equation of
state for ideal gases, and states that

p = ρRT, (4.4.13)

with R being the specific gas constant. Now we have the same amount of equations as unknowns. So
we should be able to solve it.
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5. Application of the conservation laws

It is finally time to actually put theory into practice. We have three conservation laws. Let’s apply them!

5.1 Two parallel plates

5.1.1 The problem statement

Let’s suppose we have two horizontal plates. One is positioned at y = 0 and the other at y = D. The top
plate moves with a velocity ue to the right. This causes a flow to be present between the plates. There
is also a pressure distribution p between the plates, which also causes a flow.

We now make a few assumptions about the flow. We assume that the flow has a constant density
ρ = ρ∞, that it is steady ∂/∂t, that the flow is parallel to the plates (v = w = 0), that it doesn’t vary
in the z-direction (∂/∂z), and that there are no body forces fb.

5.1.2 Deriving the solution

Now let’s solve the problem. Since ρ is constant, we can simplify the continuity equation to

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (5.1.1)

Since v = w = 0, two terms cancel. We remain with ∂u/∂x = 0. That’s our first sub-result.

Now let’s examine the momentum equation. If we write down the equation for all three components, we
can see that a lot of terms cancel. We remain with

µ
∂2u

∂y2
=

∂p

∂x
,

∂p

∂y
= 0 and

∂p

∂z
= 0. (5.1.2)

The two rightmost equations imply that p = p(x). If we look at the leftmost equation, we see that it is
separated. Both sides must thus equal a constant c. This implies that

u(y) =
c

2µ
y2 + ay + b. (5.1.3)

By using boundary conditions u(0) = 0 and u(D) = ue (the so-called no-slip conditions), we find that

u(y) =
1
2µ

(
dp

dx

) (
y2 −Dy

)
+ ue

y

D
. (5.1.4)

We have found the velocity distribution. We see that it consists of two parts. The left part originates
from pressure differences, while the right part is caused by the moving plates. If there is no pressure
difference (dp/dx = 0), then we have a so-called planar Couette flow. If, on the other hand, the plates
are not moving (ue = 0, but dp/dx 6= 0), then we have a planar Poiseuille flow.

5.2 Analysis the planar Poiseuille flow

5.2.1 Analyzing the velocity

Let’s examine the planar Poiseuille flow now. So we assume the plates are not moving. We can now
derive a lot of things from the solution. First, we can see that the maximum velocity umax occurs at

19



y = D/2, exactly between the plates. Its magnitude is

umax = −D2

8µ

(
dp

dx

)
. (5.2.1)

The minus sign makes sense. The velocity flows in the direction of a negative pressure gradient.

Now let’s examine the volume flow Q̇ (also known as the volumetric flow rate) flowing through the
channel. It is given by

Q̇ =
∫ D

0

u(y) dy = − 1
12µ

(
dp

dx

)
D3. (5.2.2)

From this, we can derive the mean velocity ū. It is given by

ū =
Q

D
= − D2

12µ

(
dp

dx

)
=

2
3
umax. (5.2.3)

5.2.2 Analyzing the forces

The wall shear stress τw is given by

τw = µ

(
du

dy

)
. (5.2.4)

If we evaluate this at the walls (y = 0 and y = D), we find that this flow gives us

τw =
1
2
D

(
dp

dx

)
. (5.2.5)

So the wall stress is independent of the viscosity µ. From this wall stress, we can derive the friction
coefficient cf . It is defined as

cf =
τw

1
2ρū2

. (5.2.6)

If we apply this definition to our flow, we can find that

cf = 12
µ

ρūD
=

12
ReD

. (5.2.7)

The variable ReD is the Reynolds number, with length D as the reference length.

5.3 Analysis of the planar Couette flow

5.3.1 Velocity and stress

Now let’s examine the Couette flow. So we assume that ∂p/∂x = 0. However, the top plate does move
with a velocity ue. The velocity distribution is thus given by

u(y) = ue
y

D
. (5.3.1)

The shear stress in the flow can be found using

τxy = µ

(
du

dy

)
= µ

ue

D
. (5.3.2)

This shear stress is the whole reason why the flow is moving. It is caused by the moving top plate, and
is, through the fluid, transferred to the bottom plate.
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5.3.2 Finding the temperature distribution

It is time to apply the energy equation. After removing the zero terms, we find that

∂

∂y

(
κ

∂T

∂y

)
+

∂

∂y

(
µu

∂u

∂y

)
= 0. (5.3.3)

We now have to assume that κ and µ are constant. (We say that κ = κ∞ and µ = µ∞.) So we can pull
them out of the derivative. We also introduce the enthalpy h = cpT , with cp the specific heat. This
turns the energy equation into

1
Pr

∂2h

∂y2
+

∂

∂y

(
u

∂u

∂y

)
= 0, where Pr =

µ∞cp

κ∞
. (5.3.4)

The number Pr is known as the Prandtl number. Integrating twice will give

h +
1
2
Pru

2 = ay + b, (5.3.5)

where a and b are constants. To find them, we use the boundary conditions u(0) = 0, h(0) = hw (the
enthalpy at the bottom plate), u(D) = ue and u(D) = he (the enthalpy at the top plate). This then
gives us an expression for the enthalpy, being

h(y) = hw + (he − hw)
y

D
+

1
2
Pru

2
e

(
y

D
−

( y

D

)2
)

. (5.3.6)

And with this, the temperature distribution has been found. Something interesting can be seen here. If
he = hw, then the enthalpy isn’t just constant. It is still parabolically distributed. This is caused by heat
creation due to viscous effects.

5.3.3 Analysis of the heat flow

But we can do even more with the temperature (or enthalpy) distribution. From it, we can derive the
heat flow q̇, using

q̇ = −κ
dT

dy
= − κ

cp

dh

dy
= − µ

D

he − hw

Pr
+

1
2

µ

D
u2

e

(
2

y

D
− 1

)
. (5.3.7)

Again, we see that, if he = hw, there is still heat flow. It flows away from the center and goes to the
plates, where it is dissipated. In fact, we can even find how much heat is dissipated at the walls. For
that, we examine q̇(0) and q̇(D). We find them to be

q̇(0) = − µ

D

he − hw

Pr
− 1

2
µ

D
u2

e and q̇(D) = − µ

D

he − hw

Pr
+

1
2

µ

D
u2

e. (5.3.8)

In other words, the heat flow through the walls due to the viscous effects is 1
2

µ
D u2

e. This means that the
total heat creation per second due to viscous effects is equal to µ

D u2
e (since there are two walls). And

that is interesting to know.
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