
Constitutive Modeling Summary
(Solid Part)

1. Forces and stresses

Consitutive modelling is mainly about the relation between things like forces and things like displace-
ments. In this chapter we examine the forces. In the next chapter we will discuss the displacements
and their relationship with forces. In the third and last chapter, we examine some methods for solving
problems.

1.1 Forces and momentum

1.1.1 Types of forces

We can distinguish two important types of forces. These are the (distributed) contact forces t and
the (distributed) mass forces b. They are defined as

t = lim
∆A→0

∆F
∆A

and b = lim
∆V→0

∆F
∆V

. (1.1.1)

Here F denotes a force, A denotes an area and V denotes a volume. Now let’s examine a certain volume
Ω. The total contact force Fs and the total body force Fb can be found using

Fs =
∫

∂Ω

t(x) dA and Fb =
∫

Ω

b(x) dV. (1.1.2)

(The signal ∂Ω means we integrate over the surface of the volume Ω.) Together, the total contact force
Fs and the total body force form the total external force Fext.

1.1.2 Linear momentum

Again, we examine a volume Ω. The total linear momentum P of the volume can be found using

P =
∫

Ω

ρv dV, (1.1.3)

where ρ denotes the density of the volume and v the velocity. It can be shown that Fext = dP/dt. In
other words, ∫

∂Ω

t dA+
∫

Ω

b dV =
d

dt

∫
Ω

ρv dV =
∫

Ω

ρa dV. (1.1.4)

1.1.3 Moments and angular momentum

Forces also cause moments. The moment due to surface forces Ms and the moment due to body
forces Mb can be found using

Ms =
∫

∂Ω

x× t dA and Mb =
∫

Ω

x× b dV. (1.1.5)
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Together, these two moments form the total moment of external forces Mext. (All moments are
about the origin.)

We can also find the total angular momentum H. (Also with respect to the origin.) We do this using

H =
∫

Ω

x× ρv dV. (1.1.6)

Similar to linear momentum, it also holds that Mext = dH/dt. From this, it can be derived that∫
∂Ω

x× t dA+
∫

Ω

x× b dV =
d

dt

∫
Ω

x× ρv dV =
∫

Ω

x× ρa dV. (1.1.7)

1.2 Stress vectors and tensors

1.2.1 The stress vector

It’s time to examine internal forces. To examine the internal forces in an object, we make a cut along
a plane. This plane has a certain unit normal vector n. The internal forces at a given position are
now indicated by the stress vector t(n). (Note that the stress vector can be seen as a surface force.
That’s why it is also denoted by t.)

Let’s suppose that we know the stress vector t at a given point for a given normal vector n. We can
then also find normal component tn (the stress normal to the cutting plane) and the tangential
component ts (the stress parallel to the cutting plane). This can be done using

tn = (t · n)n and ts = t− tn = t− (t · n)n. (1.2.1)

1.2.2 The stress tensor

There is, however, one small problem. The stress vector t depends on the on the cutting plane normal
vector n. To know the exact stress distribution, we need to know t for every n. This may seem like a lot
of work. Luckily, there is a trick (originating from the balance of momentum) called the stress tensor.

The stress tensor [σij ] is a 3 × 3 matrix. It has thus 9 coefficients σij . Once these parameters are
known, the stress vector t for any unit normal vector n can be found using

t(n) =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


n1

n2

n3

 . (1.2.2)

The question now remains, how can we find the stress tensor? To do that, we have to first find the stress
vector t for three (linearly independent) normal vectors n. (It is often convenient to choose the three
unit normal vectors e1, e2 and e3.) We should then find the corresponding stress vectors t1, t2 and
t3. Inserting all these data into equation (1.2.2) gives us 9 equations and 9 unknowns. The unknown
coefficients can then be solved.

When solving for the coefficients, you can use a small trick. You can use that the stress tensor is
symmetric. (This can be derived from balance of angular momentum.) So we have

σ12 = σ21, σ13 = σ31 and σ23 = σ32. (1.2.3)
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1.2.3 Stress tensor eigenvalues and eigenvectors

The stress tensor [σij ] has three eigenvalues σ(1), σ(2) and σ(3). These eigenvalues are called the principal
stresses. Because the stress tensor is symmetric, these eigenvalues must be real. We usually order them
such that σ(1) ≥ σ(2) ≥ σ(3).

Of course, there are eigenvectors n(1), n(2) and n(3) corresponding to these eigenvalues. Usually, these
eigenvectors are normalized, such that their length |n| is one. These vectors are called the principal
stress directions. It can be shown that they are mutually perpendicular. Because of this, they together
form an orthogonal basis, called the principal stress basis.

There is something special about this basis. Previously, we have built our stress tensor [σij ] with respect
to our normal Cartesian basis (e1, e2, e3). If we, however, build it with respect to the principal stress
basis, we find a very peculiar stress tensor, being

[σij ] =

σ(1) 0 0
0 σ(2) 0
0 0 σ(3)

 . (1.2.4)

1.2.4 Relevance of principal stresses and their directions

You may wonder, what are these principal stresses and principal stress directions good for? Well, the prin-
cipal stresses are used in many stress criterions. For example, there is the tresca criterion, demanding
that

max
(
|σ(1) − σ(2)|, |σ(1) − σ(3)|, |σ(2) − σ(3)|

)
≤ σy, (1.2.5)

where the critical value σy is known as the (initial) yield stress. Similarly, there is the Huber-von
Mises-Hencky criterion, demanding that

σm =

√(
σ(1) − σ(2)

)2 +
(
σ(1) − σ(3)

)2 +
(
σ(2) − σ(3)

)2
2

≤ σy, (1.2.6)

where σm is the maximum distortion energy.

The principal stress directions are also important. They are closely related to the directions and planes
in which failure will initiate and propagate. This data is important when trying to optimize a structure.
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2. Displacements and strains

After examining forces and stresses, we will now examine displacements and strains. How are they
defined? And what can we do with them? We also examine their relation with stresses.

2.1 Definitions of the displacements and strains

2.1.1 Introduction of the strain tensor

Let’s suppose we have some object Ω, we’re deforming. Let’s examine some point P . We call its initial
position x and its final position y. The displacement of P (its movement) then is

u = y − x. (2.1.1)

However, we are usually interested in the deformations of the material. The movement of some point P
doesn’t say much about that. To examine the deformations, we use displacement gradients ∂ui/∂xj .
In fact, the strain tensor is defined as

[εij ] =


∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u2
∂x1

+ ∂u1
∂x2

)
∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
1
2

(
∂u3
∂x1

+ ∂u1
∂x3

)
1
2

(
∂u3
∂x2

+ ∂u2
∂x3

)
∂u3
∂x3

 . (2.1.2)

Note that the strain tensor is symmetric.

2.1.2 The meaning of the strain tensor

So, what is the use of the strain tensor? Well, it is closely related to the deformations in the object. To
see how, we examine two points P and Q, originally being a very small distance l0 apart. Their new
relative distance is l. We call the unit vector in the direction of the line PQ the vector n. The relative
elongation ε of the distance PQ (also known as the normal strain) can then be approximated by

ε(n) =
l − l0
l

≈
3∑

i,j=1

εijninj = nT [εij ]n. (2.1.3)

Using this, we can more closely examine the meaning of the strain tensor. If we examine the relative
elongation in the direction of the Cartesian unit vector e1, then we find that ε(e1) = ε11. Similarly
ε(e2) = ε22 and ε(e3) = ε33. So the diagonal components simply indicate normal strain.

The next question is, what do the non-diagonal terms of the strain tensor mean? They indicate a change in
angle of two lines that were previously perpendicular. (It’s also known as the shear strain.) Let’s examine
two lines PQ and PR. PQ is in the direction of e1, while PR is in the direction of e2. Their relative angle
is thus π/2. It can be shown that, after deformation, their relative angle is π/2− ε12 − ε21 = π/2− 2ε12.

2.1.3 Principal strains and their directions

Just like the stress tensor [σ], also the strain tensor [ε] is symmetric. This means that its three eigenvalues
ε(1), ε(2) and ε(3), called the principal strains, are all real. The three corresponding eigenvectors m(1),
m(2) and m(3), called the principal strain directions, are mutually perpendicular. Together, they
form the principal strain basis.
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Previously, we have built our strain tensor [εij ] with respect to our normal Cartesian basis (e1, e2, e3).
If we, however, build it with respect to the principal strain basis, we get the strain tensor

[εij ] =

ε(1) 0 0
0 ε(2) 0
0 0 ε(3)

 . (2.1.4)

All non-diagonal terms are zero. There is thus no shear strain. So we can conclude that, with respect to
the principal strain basis, all perpendicular angles remain perpendicular.

You may wonder whether the principal stress directions and principal strain directions are the same. They
usually are not. Only for isotropic materials (materials with the same properties in every direction)
will these directions coincide.

2.1.4 Finding the displacement field from the strain tensor

Let’s suppose we know the strain tensor [εij ] at every given position x. Can we then find the displace-
ments? Well, it turns out that we almost can do that. Only the so-called rigid body modes, being pure
translation and rotation (without any deformation), can’t be included. However, by using appropriate
boundary conditions, we can get rid of these rigid body modes.

So how do we find the displacement field? Since this is a rather difficult process, we only consider the
two-dimensional plane strain case. So ε13 = ε23 = ε33 = 0. The first step is to check whether the strains
ε11, ε12 and ε22 are integrable. To do this, we need to check the compatibility equation, being

∂2ε11
∂x2

2

+
∂2ε22
∂x2

1

− 2
∂2ε12
∂x1∂x2

= 0. (2.1.5)

If this equation holds, there is a solution.

The next step is to use ε11 = ∂u1/∂x1 and ε22 = ∂u2/∂x2. In other words, we need to integrate ε11 and
ε22 with respect to x1 and x2, respectively. This results in certain unknown functions. These functions
can often be determined using ε12 = 1

2

(
∂u1
∂x2

+ ∂u2
∂x1

)
up to certain unknown constants. In the end, we

should remain with a solution with a few unknown constants, indicating the rigid body modes.

2.1.5 The rotation tensor

Sometimes deformations aren’t the only thing we’re interested in. Rotations can also be important. To
examine them, we use the infinitesimal rotation tensor, defined as

[ωij ] =


0 1

2

(
∂u1
∂x2

− ∂u2
∂x1

)
1
2

(
∂u1
∂x3

− ∂u3
∂x1

)
1
2

(
∂u2
∂x1

− ∂u1
∂x2

)
0 1

2

(
∂u2
∂x3

− ∂u3
∂x2

)
1
2

(
∂u3
∂x1

− ∂u1
∂x3

)
1
2

(
∂u3
∂x2

− ∂u2
∂x3

)
0

 . (2.1.6)

Note that this matrix is not symmetric. In fact, it is anti-symmetric (ωij = −ωji). The tensor above
contains information about the average rotation. However, we’ll not go into detail about this.

2.2 The constitutive relations

Constitutive relations relate loads with displacements. Or equivalently, they relate the stress tensor
with the strain tensor. What are the relationships between those two tensors?
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2.2.1 Linearly elastic solids

We want to find a relationship between the stress tensor and the strain tensor. There are, however, many
types of materials. For some weird materials, the stress depends on the strain, the strain rate and the
loading history.

Luckily, for most materials, the stress (approximately) only depends on the strain. And it does this in
a linear way. Such materials are called linear elastic solids. For these materials, the stress tensor and
the strain tensor can be related by a linear relation, such as

σij =
3∑

k,l=1

Cijklεkl. (2.2.1)

The numbers Cijkl are called the elastic coefficients. There are 81 of these components. Together, they
form the elasticity tensor [Cijkl] (also denoted as C). Usually, these components need to be determined
experimentally. However, they are not all independent. So, we can apply some tricks.

2.2.2 Voigt’s notation

We know that both the stress tensor and the strain tensor are symmetric. (So σij = σji and εij = εji.)
Because of this, we also must have Cijkl = Cijlk and Cijkl = Cjikl. (These relations are called minor
symmetries.) So, instead of 81 independent coefficients, we now only have 36. And because of this, we
can also write equation (2.2.1) as

σij = Cij11ε11 + Cij22ε22 + Cij33ε33 + Cij23(2ε23) + Cij13(2ε13) + Cij12(2ε12) (2.2.2)

However, since there are only 36 independent coefficients, it’s not useful to write 81 coefficients down
every time. That’s why Voigt’s notation is often convenient. In Voigt’s notation, the stress and strain
tensors aren’t written as 3× 3 matrices, but as 6× 1 vectors. Also, the elasticity tensor C is written as
a 6× 6 matrix. This gives us the following relation

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


=



ε11

ε22

ε33

2ε23
2ε13
2ε12


. (2.2.3)

It’s important to note the order of the coefficients. (In other books this order may be different.) Also
note the twos in the strain vector.

The elasticity tensor above has another interesting property. By examining elastic strain energy, it can
be shown that Cijkl = Cklij . (This is a so-called major symmetry.) This implies that the elasticity
tensor above is symmetric. So there are only 21 independent coefficients left.

2.2.3 The compliance matrix

If we know the strain and the elasticity tensor, then we can find the stress. But, we can also do it the
other way around. For this, we use the compliance tensor S = C−1. This then gives us that

ε̄ = Sσ. (2.2.4)

By the way, with ε̄ we mean the new strain vector (with the added twos).
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2.2.4 Material symmetries

We still have 21 independent properties. But we can often reduce that number, due to geometrical
symmetries in the material. Some materials have no such intrinsic symmetries. They are called triclinic
materials and need to be described by 21 independent variables.

Some materials have a plane of symmetry. A material has such a plane of summetry if, after a reflection
about that plane, is indistinguishable from the original material.

A material that has only one such plane of symmetry is called monoclinic. For such a material, eight of
the coefficients will be zero. So there are 13 remaining independent coefficients. A material that has three
mutually perpendicular planes of symmetry is called orthotropic. Such a material has 9 independent
coefficients.

A material can also be transversely isotropic. In this case the material has three planes of symmetry,
with an angle of 60◦ between them. (Like in a honeycomb structure.) In this case, there are only 5
independent coefficients.

2.2.5 Isotropic materials

For some materials every plane is a plane of symmetry. Such materials are called isotropic materials.
Such materials have only two independent properties. We can write the elasticity tensor for these materials
as

[CIJ ] =



2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


. (2.2.5)

The parameters λ and µ are called the Lamé coefficients. µ is also known as the shear modulus. (λ
has no clear physical meaning.) From the above matrix, we can also directly find that

σij = 2µεij + λδij

3∑
k=1

εkk. (2.2.6)

By the way, the symbol δij is the Kronecker delta and is defined as

δij =

{
1 if i = j,

0 if i 6= j.
(2.2.7)

We can also invert the above relation to express the strain ε as a function of the stress σ. We then get

εij =
1
E

(
(1 + ν)σij − νδij

3∑
k=1

σkk

)
. (2.2.8)

Here E is the elastic modulus and ν is Poisson’s ratio.

7



3. Application of the consitutive models

We now know how stresses and strains relate to each other. It’s time to find out how we can use this to
solve problems. First we examine static problems. We then move on to dynamic problems.

3.1 Static problems

3.1.1 Conditions and equations

When solving problems, the stress field should obey certain conditions. First let’s take a look at what con-
ditions there are. From the first chapter of this summary, we can recall the balance of linear momentum.
It stated that ∫

∂Ω

t dA+
∫

Ω

b dV =
∫

Ω

ρa dV. (3.1.1)

For static problems, the acceleration is zero. If we rewrite the above equation, and split it up in compo-
nents, we can then find that

3∑
j=1

∂σij

∂xj
+ bi = 0. (3.1.2)

This is the balance of linear momentum for static problems. It is our first condition. There are also
the so-called compatibility conditions. They demand that

∂2εij
∂xk∂xl

+
∂2εkl

∂xi∂xj
=

∂2εik
∂xj∂xl

+
∂2εjl

∂xi∂xk
. (3.1.3)

Note that there are 81 different compatibility conditions, for every combination of i, j, k and l. There
are often also boundary conditions. Sometimes the displacement in some direction ui is set. At other
times, the boundary traction t̂i is set. In this case, you can use the stress tensor to find a relation for t̂i.

So our task is to find a stress field which satisfies all the conditions. With that, we can then find the
displacement field. For that, we use the constitutive relations

σij =
3∑

k,l=1

Cijklεkl. (3.1.4)

and the strain-displacement relations

εij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
(3.1.5)

There is, however, one small problem. An analytical solution only exists for a few simple problems.
Therefore the above equations are often used in numerical methods. Nevertheless, we will examine some
analytical solutions now.

3.1.2 Plane stress case

The first case we examine is the plane stress case. Stress occurs only in a plane. Therefore σ13 = σ23 =
σ33 = 0. The stress also only depends on the position on the plane. Thus σij = σij(x1, x2). (Note that
in general ε33 6= 0.) We also assume that the material is isotropic (it has the same properties in every
direction) and homogeneous (the material has the same properties at every point in the structure).
Also, there are no body forces. (Thus b1 = b2 = 0.)
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To find the stress distribution, it is handy to use a so-called Airy stress function ψ. We define ψ such
that

σ11 =
∂2ψ

∂x2
2

, σ2 =
∂2ψ

∂x2
1

and σ12 = − ∂2ψ

∂x1∂x2
, (3.1.6)

if such a function exists. This has several advantages. We can see that the balance of linear momentum
is now automatically satisfied. But what about the 81 compatibility equations? Well, it turns out that
there are only 6 independent compatibility equations. And of these 6, only 1 actually matters. (The
others are not important or automatically satisfied.) This equation demands that

∂2ε11
∂x2

2

+
∂2ε22
∂x2

1

= 2
∂ε12

∂x1∂x2
. (3.1.7)

We can now use the relations between stress and strain (the constitutive relations). This turns the above
equation into a single compatibility equation for the stress function, being

∂4ψ

∂x4
1

+ 2
∂4ψ

∂x2
1∂x

2
2

+
∂4ψ

∂x4
2

= 0. (3.1.8)

All we have to do is find a stress function ψ which satisfies this compatibility equation, and any given
boundary conditions. Once we have done that, we have solved our problem.

3.1.3 Plane strain case

We now examine the plain strain case. Now we the strain occurs only in a plane. So ε13 = ε23 =
ε33 = 0. (But not σ33 = 0.) Also, εij = εij(x1, x2). We again assume that the material is isotropic and
homogeneous, and that there are no body forces.

We define the stress function the same as in the plane stress case. So,

σ11 =
∂2ψ

∂x2
2

, σ2 =
∂2ψ

∂x2
1

and σ12 = − ∂2ψ

∂x1∂x2
, (3.1.9)

After examining compatibility equations, we find that the only remaining equation again is

∂4ψ

∂x4
1

+ 2
∂4ψ

∂x2
1∂x

2
2

+
∂4ψ

∂x4
1

= 0. (3.1.10)

So the plane stress and the plane strain case work quite the same.

3.1.4 Finding a stress function

So how do we find an appropriate stress function ψ? To do this, we simply assume a form for ψ. Usually,
an exponential form would do well. Therefore we assume that

ψ =
∑
m

∑
n

cmnx
n
1x

m
2 . (3.1.11)

Terms with m+n ≤ 1 will drop out of all the compatibility equations. We therefore don’t consider them.
Also, terms with m+ n ≥ 5 usually aren’t necessary to get a good solution. This prevents us a bit from
getting an incredibly huge polynomial.

After having a form for ψ, we insert it into the compatibility equation. This gives us some relations for
the unknown coefficients cmn. We also try to match φ with the boundary conditions. This gives us even
more relations for the unknown coefficients. In the end, all the coefficients should be solved for.

It’s not always possible to let ψ match exactly with the boundary conditions. In this case, Saint
Venant’s principle should often be used. This principle states that, relatively far away from the
boundary, the introduced loads have spread out. This can be used to let ψ approximately match the
boundary conditions.
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3.2 Dynamic Problems

3.2.1 The wave equation

Let’s examine the half-space. This is a space such that there is material for every x1 > 0. The boundary
of the half-space is thus simply the e2, e3 plane. We load this half-space on its boundary by a uniform
time-varying compressive load p̂(t) in e1-direction. Now let’s ask ourselves, what happens?

Now let’s examine linear momentum in the e1-direction. We assume that there are no body forces
(b = 0). We then see that

∂σ11

∂x1
= ρ

∂2u1

∂t2
. (3.2.1)

Due to symmetry, there is only displacement in e1-direction. So ε22 = ε33 = ε12 = ε13 = ε23 = 0 and
ε11 = ∂u1/∂x1. We also have σ11 = (λ+ 2µ)∂u1/∂x1. This turns the above equation into

c2p
∂2u1

∂x2
1

=
∂2u1

∂2t
, where cp =

√
λ+ 2µ
ρ

. (3.2.2)

cp is called the longitudinal (pressure) wave speed. We can now see that the above equation is
the wave equation, known from partial differential equations. Of course, a PDE should have initial
conditions and boundary conditions. The initial conditions are often assumed to be

u1(x, 0) = 0 and
∂u1

∂t
(x1, 0) = 0. (3.2.3)

There is only one boundary condition. It is set at x1 = 0 and is given by

σ11(0, t) = (λ+ 2µ)
∂u1

∂x1
(0, t) = −p̂(t). (3.2.4)

3.2.2 The solution of the wave equation

It’s time to solve the wave equation. The general solution of the wave equation is given by

u1(x1, t) = f

(
t− x1

cp

)
+ g

(
t+

x1

cp

)
. (3.2.5)

f and g are functions that need to be chosen such that the initial and boundary conditions are satisfied.
f denotes a wave that travels in the positive e1-direction. Similarly, g denotes a wave that travels in the
negative e1-direction.

If we also include the initial conditions and boundary conditions, we can derive relations for f and g. In
fact, these two functions are given by

f(η) =

{
1

ρcp

∫ η

0
p̂(τ) dτ for η ≥ 0

0 for η ≤ 0
and g(ξ) = 0 for ξ ≥ 0. (3.2.6)

Combining this with the general solution, we can find that

u1(x1, t) =

{
1

ρcp

∫ t−x1/cp

0
p̂(τ) dτ for t ≥ x1/xp,

0 for t ≤ x1/cp.
(3.2.7)

So the displacement field is now known. The stress distribution can also be solved for. We then find that

σ11(x1, t) =

{
−p̂(t− x1/cp) for t ≥ x1/xp,

0 for t ≤ x1/cp.
(3.2.8)

We can see something quite interesting from this equation. When a force is introduced into the half-space,
it travels through the half-space with velocity cp. That’s interesting to know.
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3.2.3 Multiple layers with different properties

What happens if we have two layers A and B, having different material properties? The two layers each
have different wave velocities, being

cAp =

√
λA + 2µA

ρA
and cBp =

√
λB + 2µB

ρB
. (3.2.9)

Let’s suppayer A starts at x1 = 0. It ends at x1 = d, which is also where the other layer starts. For times
t < d/cAp , layer B will not notice any of the waves coming from the applied load. However, for t ≥ d/cAp ,
there will be an incident pulse fi acting on layer B. At the boundary between these layers, part of this
pulse will be reflected. This is the reflected pulse fr. Another part will be transmitted into layer B.
This is the transmitted pulse ft. So, for t ≥ d/cAp , we have

u1(x1, t) = fi

(
t− x1

cAp

)
+fr

(
1 +

x1

cAp

)
for x1 < d and u1(x1, t) = ft

(
t− x1

cBp

)
for x1 > d. (3.2.10)

The question remains, what are these functions fr and ft? To find them, we have to use conditions. We
know that the displacement at the boundary must remain the same for both layers. Due to Newton’s
third law, also the stress must remain continuous. So the conditions at the boundary are

u1(d−, t) = u1(d+, t) and σ11(d−, t) = σ11(d+, t). (3.2.11)

By using this, we can find that

fr =
ρBc

B
p − ρAc

A
p

ρBcBp + ρAcAp
fi and ft =

2ρAc
A
p

ρBcBp + ρAcAp
fi. (3.2.12)

It is often convenient to define the ratio of longitudinal acoustic impedances γp as

γp =
ρBc

B
p

ρAcAp
. (3.2.13)

In this case, the above equations turn into

fr =
1− γp

1 + γp
fi and ft =

2
1 + γp

fi. (3.2.14)

We can find similar relations for the stress propagation. These relations are

σ
(r)
11 =

γp − 1
γp + 1

σ
(i)
11 and σ

(t)
11 =

2γp

γp + 1
σ

(i)
11 . (3.2.15)

3.2.4 Shear stress propagation

We have seen how normal stress propagates in a half-space. But what about shear stress? Let’s assume
a shear load ŝ(t) is applied on the half-space boundary, in the e2-direction. What happens?

This time we have ε12 = 1
2

∂u2
∂x1

, while ε11 = ε22 = ε33 = ε13 = ε23 = 0. We also have σ12 = 2µε12 = µ∂u2
∂x1

.
This time, we can derive from balance of linear momentum that

c2s
∂2u2

∂x2
1

=
∂2u2

∂t2
, where cs =

√
µ

ρ
. (3.2.16)
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The quantity cs is called the transverse (shear) wave speed. We again have a wave equation. The
initial conditions now are

u2(x, 0) = 0 and
∂u2

∂t
(x1, 0) = 0. (3.2.17)

The boundary condition is again set at x1 = 0. It is now given by

σ12(0, t) = µ
∂u2

∂x1
(0, t) = ŝ(t). (3.2.18)

We can solve the wave equation for u2. We then find that

u2(x1, t) =

{
1

ρcs

∫ t−x1/cs

0
ŝ(τ) dτ for t ≥ x1/xs,

0 for t ≤ x1/cs.
(3.2.19)

Similarly, we can find a relation for the shear stress distribution. We now find that

σ12(x1, t) =

{
ŝ(t− x1/cs) for t ≥ x1/xs,

0 for t ≤ x1/cs.
(3.2.20)
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