
Probability Theory Summary

1. Basic Concepts

1.1 Set Theory

Before we venture into the depths of probability, we start our journey with a field trip on set theory.

1.1.1 What is a set?

Sets are collections of elements or samples. Sets are denoted by capital letters (A, B). Elements are
denoted by ωi. The set containing all elements is the sample space Ω. The set with no elements is
called the empty set ∅.
Now let’s discuss some notation. If we say that A = {ω1, ω2, . . . , ωn}, then we say that A consists of the
elements ω1, ω2, . . . , ωn. ωi ∈ A means that ωi is in A, whereas ωi 6∈ A means that ωi is not in A.

1.1.2 Comparing sets

We can compare and manipulate sets in many ways. Let’s take a look at it. We say that A is a subset
of B (denoted by A ⊂ B) if every element in A is also in B. When (at least) one element in A is not
in B, then A 6⊂ B. If A ⊂ B and B ⊂ A (they consist of the same elements), then A and B are equal:
A = B. Sets are said to be disjoint if they have no common elements.

We can’t just add up sets. But we can take the intersection and the union of two sets. The intersection
of A and B (denoted by A ∩ B) consists of all elements ωi that are in both A and B. (So ωi ∈ A ∩ B
if ωi ∈ A and ωi ∈ B.) On the other hand, the union of A and B (denoted by A ∪ B) consists of all
elements ωi that are in either A or B, or both. (So ωi ∈ A ∪B if ωi ∈ A or ωi ∈ B.)

The set difference A \ B consists of all elements that are in A, but not in B. There is also the
complement of a set A, denoted by Ac. This consists of all elements that are not in A. Note that
Ac = Ω \A and A \B = A ∩Bc.

There’s one last thing we need to define. A partition of Ω is a collection of subsets Ai, such that
• the subsets Ai are disjoint: Ai ∩Aj = ∅ for i 6= j.
• the union of the subsets equals Ω:

⋃n
i=1 Ai = A1 ∪A2 ∪ . . . ∪An = Ω.

1.2 Introduction to Probability

It’s time to look at probability now. Probability is all about experiments and their outcomes. What can
we say about those outcomes?

1.2.1 Definitions

Some experiments always have the same outcome. These experiments are called deterministic. Other
experiments, like throwing a dice, can have different outcomes. There’s no way of predicting the outcome.
We do, however, know that when throwing the dice many times, there is a certain regularity in the
outcomes. That regularity is what probability is all about.
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A trial is a single execution of an experiment. The possible outcomes of such an experiment are denoted
by ωi. Together, they form the probability space Ω. (Note the similarity with set theory!) An event
A is a set of outcomes. So A ⊂ Ω. We say that Ω is the sure event and ∅ is the impossible event.

Now what is the probability P (A) of an event A? There are many definitions of probability, out of
which the axiomatic definition is mostly used. It consists of three axioms. These axioms are rules
which P (A) must satisfy.

1. P (A) is a nonnegative number: P (A) ≥ 0.
2. The probability of the sure event is 1: P (Ω) = 1.
3. If A and B have no outcomes in common (so if A ∩ B = ∅), then the probability of A ∪ B equals

the sum of the probabilities of A and B: P (A ∪B) = P (A) + P (B).

1.2.2 Properties of probability

From the three axioms, many properties of the probability can be derived. Most of them are, in fact,
quite logical.

• The probability of the impossible event is zero: P (∅) = 0.
• The probability of the complement of A satisfies: P (Ac) = 1− P (A).
• If A ⊂ B, then B is equally or more likely than A: P (A) ≤ P (B).
• The probability of an event A is always between 0 and 1: 0 ≤ P (A) ≤ 1.
• For any events A and B, there is the relation: P (A ∪B) = P (A) + P (B)− P (A ∩B).

Using the probability, we can also say something about events. We say two events A and B are mutually
independent if

P (A ∩B) = P (A)P (B). (1.2.1)

Identically, a series of n events A1, . . . , An are called mutually independent if any combination of
events Ai, Aj , . . . , Ak (with i, j, . . . , k being numbers between 1 and n) satisfies

P (Ai ∩Aj ∩ . . . ∩Ak) = P (Ai)P (Aj)P (Ak). (1.2.2)

1.2.3 Conditional Probability

Sometimes we already know some event B happened, and we want to know what the chances are that
event A also happened. This is the conditional probability of A, given B, and is denoted by P (A|B).
It is defined as

P (A|B) =
P (A ∩B)

P (B)
. (1.2.3)

The conditional probability satisfies the three axioms of probability, and thus also all the other rules.
However, using this conditional probability, we can derive some more rules. First, there is the product
rule, stating that

P (A1 ∩A2 ∩ . . . ∩An) = P (A1)P (A2|A1)P (A3|A2 ∩A1) . . . P (An|An−1 ∩ . . . ∩A2 ∩A1). (1.2.4)

Another rule, which is actually quite important, is the total probability rule. Let’s suppose we have
a partition B1, . . . , Bn of Ω. The total probability rule states that

P (A) =
n∑

i=1

P (A ∩Bi) =
n∑

i=1

P (Bi)P (A|Bi). (1.2.5)

By combining this rule with the definition of conditional probability, we find another rule. This rule is
called Bayes’ rule. It says that

P (Bj |A) =
P (A|Bj)P (Bj)∑n
i=1 P (A|Bi)P (Bi)

. (1.2.6)
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2. Random Variables and Distributions

2.1 Random Variable Definitions

Suppose we know all the possible outcomes of an experiment, and their probabilities. What can we do
with them? Not much, yet. What we need, are some tools. We will now introduce these tools.

2.1.1 Random variables

It is often convenient to attach a number to each event ωi. This number is called a random variable
and is denoted by x(ωi) or simply x. You can see the random variable as a number, which can take
different values. For example, when throwing a dice we can say that x(head) = 0 and x(tail) = 1. So x
is now a number that can be either 0 or 1.

Random variables can generally be split up in two categories: discrete and continuous random variables.
A random variable x is discrete if it takes a finite or countable infinite set of possible values. (With
countable finite we mean the degree of infinity. The sets of natural numbers N and rational numbers Q
are countable finite, while the set of real numbers R is not.)

Both types of random variables have fundamental differences, so in the coming chapters we will often
explicitly mention whether a rule/definition applies to discrete or continuous random variables.

2.1.2 Probability mass function

Let’s look at the probability that x = x for some number x. This probability depends on the random
variable ”function” x(ωi) and the number x. It is denoted by

Px(x) = P (x = x). (2.1.1)

The function Px(k) is called the probability mass function (PMF). It, however, only exists for discrete
random variables. For continuous random variables Px(k) = 0 (per definition).

2.1.3 Cumulative distribution function

Now let’s take a look at the probability that x ≤ x for some x. This is denoted by

Fx(x) = P (x ≤ x). (2.1.2)

The function Fx(x) is called the cumulative distribution function (CDF) of the random variable x.
The CDF has several properties. Let’s name a few.

• The limits of Fx(x) are given by

lim
x→−∞

Fx(x) = 0 and lim
x→∞

Fx(x) = 1. (2.1.3)

• Fx(x) is increasing. If x1 ≤ x2, then Fx(x1) ≤ Fx(x2).
• P (x > x) = 1− Fx(x).
• P (x1 < x̄ ≤ x2) = Fx(x2)− Fx(x1).

The CDF exists for both discrete and continuous random variables. For discrete random variables, the
function Fx(x) takes the form of a staircase function: its graph consists of a series of horizontal lines. For
continuous random variables the function Fx(x) is continuous.
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2.1.4 Probability density function

For continuous random variables there is a continuous CDF. From it, we can derive the probability
density function (PDF), which is defined as

fx(x) =
dFx(x)

dx
⇔ Fx(x) =

∫ x

−∞
fx(t)dt. (2.1.4)

Since the CDF Fx(x) is always increasing, we know that fx(x) ≥ 0. The PDF does not exist for discrete
random variables.

2.2 Discrete Distribution types

There are many distribution types. We’ll be looking at discrete distributions in this part, while continuous
distributions will be examined in the next part. But before we even start examining any distributions,
we have to increase our knowledge on combinations. We use the following paragraph for that.

2.2.1 Permutations and combinations

Suppose we have n elements and want to order them. In how many ways can we do that? The answer
to that is

n! = n · (n− 1) · . . . · 2 · 1. (2.2.1)

Here n! means n factorial. But what if we only want to order k items out of a set of n items? The
amount of ways is called the amount of permutations and is

n!
(n− k)!

= n · (n− 1) · . . . · (n− k + 1). (2.2.2)

Sometimes the ordering doesn’t matter. What if we just want to select k items out of a set of n items?
In how many ways can we do that? This result is the amount of combinations and is(

n

k

)
=

n!
k!(n− k)!

=
n · (n− 1) · . . . · (n− k + 1)

k · (k − 1) · . . . · 2 · 1
. (2.2.3)

2.2.2 The binomial distribution and related distributions

Now we will examine some types of discrete distributions. The most important parameter for discrete
distributions is the probability mass function (PMF) Px(k). So we will find it for several distribution
types.

Suppose we have an experiment with two outcomes: success and failure. The chance for success is always
just p. We do the experiment n times. The random variable x denotes the amount of successes. We now
have

Px(k) = P (x = k) =

(
n

k

)
pk(1− p)n−k. (2.2.4)

This distribution is called the binomial distribution.

Sometimes we want to know the probability that we need exactly k trials to obtain r successes. In other
words, the rth success should occur in the kth trial. The random variable x now denotes the amount of
trials needed. In this case we have

Px(k) = P (x = k) =

(
k − 1
r − 1

)
pr(1− p)k−r. (2.2.5)

4



This distribution is called the negative binomial distribution.

We can also ask ourselves: how many trials do we need if we only want one success? This is simply the
negative binomial distribution with r = 1. We thus have

Px(k) = P (x = k) = p(1− p)k−1. (2.2.6)

This distribution is called the geometric distribution.

2.2.3 Other discrete distributions

Let’s discuss some other discrete distributions. A random variable x follows a Poisson distribution
with parameter λ > 0 if

Px(k) = e−λ λk

k!
. (2.2.7)

This distribution is an approximation of the binomial distribution if np = λ, p → 0 and n →∞.

A random variable x has a uniform distribution if

Px(k) =
1
n

, (2.2.8)

where n is the amount of possible outcomes of the experiment. In this case every outcome is equally
likely.

A random variable has a Bernoulli distribution (with parameter p) if

Px(k) =

{
p for k = 1,

1− p for k = 0.
(2.2.9)

Finally there is the hypergeometric distribution, for which

Px(k) =

(
r

k

)(
m− r

n− k

)
(

m

n

) . (2.2.10)

2.3 Continuous Distribution Types

It’s time we switch to continuous distributions. The most important function for continuous distributions
is the probability density function (PDF) fx(k). We will find it for several distribution types.

2.3.1 The normal distribution

We start with the most important distribution type there is: the normal distribution (also called
Gaussian distribution). A random variable x is a normal random variable (denoted by x ∼
N(x, σ2

x)) if

fx(x) =
1√

2πσx

e−
1
2 ( x−x

σx
)2

. (2.3.1)

Here x and σx are, respectively, the mean and the standard deviation. (We will discuss them in the next
part.) It follows that the cumulative distribution function (CDF) is

Fx(x) =
1√

2πσx

∫ x

−∞
e−

1
2 ( t−x

σx
)2

dt. (2.3.2)
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The above integral doesn’t have an analytical solution. To get a solution anyway, use is made of the
standard normal distribution. This is simply the normal distribution with parameters x = 0 and
σx = 1. So,

Φ(z) = P (z < z) =
1√
2π

∫ z

−∞
e−

1
2 t2dt. (2.3.3)

There are a lot of tables in which you can simply insert z and retrieve Φ(z). To get back to the variable
x, you make use of the transformation

z =
x− x

σx
⇔ x = σxz + x. (2.3.4)

2.3.2 Other continuous distributions

There is also a continuous uniform distribution. A random variable x has a uniform distribution
(denoted by x ∼ U(a, b)) on the interval (a, b) if

fx(x) =

{
1

b−a for a ≤ x ≤ b,

0 otherwise.
(2.3.5)

A random variable has an exponential distribution if

fx(x) =

{
λe−λx for x ≥ 0
0 for x < 0.

(2.3.6)

Finally, a random variable has a gamma distribution if

fx(x) =

{
ba

Γ(a)x
a−1e−bx for x ≥ 0

0 for x < 0,
(2.3.7)

where Γ is the gamma function, given by

Γ(a) =
∫ ∞

0

xa−1e−x dx. (2.3.8)

2.4 Important parameters

Certain parameters apply to all distribution types. They say something about the distribution. Let’s
take a look at what parameters there are.

2.4.1 The mean

The mean is the expected (average) value of a random variable x. It is denoted by E(x) = x. For
discrete distributions we have

E(x) = x =
n∑

i=1

xiPx(xi), (2.4.1)

with x1, . . . xn the possible outcomes. For continuous distributions we have

E(x) = x =
∫ ∞
−∞

xfx(x) dx. (2.4.2)

By the way, E(. . .) is the mathematical expectation operator. It is subject to the rules of linearity, so

E(ax + b) = aE(x) + b, (2.4.3)
E(g1(x) + . . . + gn(x)) = E(g1(x)) + . . . + E(gn(x)). (2.4.4)
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2.4.2 The variance

The variance or dispersion of a random variable is denoted by σ2
x. Here σx is the standard deviation.

If x is discrete, then the variance is given by

σ2
x = D(x) = E

(
(x− x)2

)
=

n∑
i=1

(xi − x)2 Px(xi) (2.4.5)

If x is continuous, then it is given by

σ2
x = D(x) = E

(
(x− x)2

)
=
∫ ∞
−∞

(x− x)2fx(x) dx. (2.4.6)

Here D(. . .) is the mathematical dispersion operator. It can be shown that σ2
x can also be found (for

both discrete and continuous random variables) using

σ2
x = E(x2)− x2. (2.4.7)

Note that in general E(x2) 6= x2. The value E(x) = x is called the first moment, while E(x2) is called
the second moment. The variance σ2

x is called the second central moment.

This is all very nice to know, but what is it good for? Let’s take a look at that. The variance σ2
x tells

something about how far values are away from the mean x. In fact, Chebyshev’s inequality states
that for every ε > 0 we have

P (|x− x| ≥ ε) ≤ σ2
x

ε2
. (2.4.8)

2.4.3 Other moments

After the first and the second moment, there is of course also the third moment, being

E
(
(x− x)3

)
. (2.4.9)

The third moment is a measure of the symmetry around the center (the skewness). For symmetrical
distributions this third moment is 0.

The fourth moment E
(
(x− x)4

)
is a measure of how peaked a distribution is (the kurtosis). The

kurtosis of the normal distribution is 3. If the kurtosis of a distribution is less than 3 (so the distribution
is less peaked than the normal distribution), then the distribution is platykurtic. Otherwise it is
leptokurtic.

2.4.4 Median and mode

Finally there are the median and the mode. The median is the value x for which Fx(x) = 1/2. So half
of the possible outcomes has a value lower than x and the other half has values higher than x.

The mode is the value x for which (for discrete distributions) Px(x) or (for continuous distributions)
fx(x) is at a maximum. So you can see the mode as the value x which is most likely to occur.
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3. Multiple Random Variables

3.1 Random Vectors

Previously we have only dealt with one random variable. Now suppose we have more random variables.
What distribution functions can we then define?

3.1.1 Joint and marginal distribution functions

Let’s suppose we have n random variables x1, x2, . . . , xn. We can put them in a so-called random vector
x = [x1, x2, . . . , xn]T . The joint distribution function (also called the simultaneous distribution
function) Fx(x) is then defined as

Fx(x1, x2, . . . , xn) = Fx(x) = P (x1 ≤ x1, x2 ≤ x2, . . . , xn ≤ xn). (3.1.1)

(You should read the commas ”,” in the above equation as ”and” or, equivalently, as the intersection
operator ∩.) From this joint distribution function, we can derive the marginal distribution function
Fxi

(xi) for the random variable xi. It can be found by inserting ∞ in the joint distribution function for
every xj other than xi. In an equation this becomes

Fxi
(xi) = Fx(∞,∞, . . . ,∞, xi,∞, . . . ,∞). (3.1.2)

The marginal distribution function can always be derived from the joint distribution function using the
above method. The opposite is, however, not always true. It often isn’t possible to derive the joint
distribution function from the marginal distribution functions.

3.1.2 Density functions

Just like for random variables, we can also distinguish discrete and continuous random vectors. A random
vector is discrete if its random variables xi are discrete. Similarly, it is continuous if its random variables
are continuous.

For discrete random vectors the joint (mass) distribution function Px(x) is given by

Px(x) = P (x1 = x1, x2 = x2, . . . , xn = xn). (3.1.3)

For continuous random vectors, there is the joint density function fx. It can be derived from the joint
distribution function Fx(x) according to

fx(x1, x2, . . . , xn) = fx(x) =
∂nFx(x1, x2, . . . , xn)

∂x1 ∂x2 . . . ∂xn
. (3.1.4)

3.1.3 Independent random variables

In the first chapter of this summary, we learned how to check whether a series of events A1, . . . , An are
independent. We can also check whether a series of random variables are independent. This is the case if

P (x1 ≤ x1, x2 ≤ x2, . . . , xn ≤ xn) = P (x1 ≤ 1)P (x2 ≤ 2) . . . P (xn ≤ n). (3.1.5)

If this is, indeed the case, then we can derive the joint distribution function Fx(x) from the marginal
distribution functions Fxi

(xi). This goes according to

Fx(x) = Fx1
(x1)Fx2

(x2) . . . Fxn
(xn) =

n∏
i=1

Fxi
(xi). (3.1.6)
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3.2 Covariance and Correlation

Sometimes it may look like there is a relation between two random variables. If this is the case, you
might want to take a look at the covariance and the correlation of these random variables. We will now
take a look at what they are.

3.2.1 Covariance

Let’s suppose we have two random variables x1 and x2. We also know their joint distribution function
fx1,x2

(x1, x2). The covariance of x1 and x2 is defined as

C(x1, x2) = E ((x1 − x1) (x2 − x2)) =
∫ ∞
−∞

(x1 − x1) (x2 − x2) fx1,x2
(x1, x2)dx1 dx2 = E(x1x2)− x1x2.

(3.2.1)
The operator C(. . . , . . .) is called the covariance operator. Note that C(x1, x2) = C(x2, x1). We also
have C(x1, x1) = D(x1) = σ2

x1
.

If the random variables x1 and x2 are independent, then it can be shown that E(x1, x2) = E(x1)E(x2) =
x1x2. It directly follows that C(x1, x2) = 0. The opposite, however, isn’t always true.

But the covariance operator has more uses. Suppose we have random variables x1, x2, . . . , xn. Let’s define
a new random variable z as z = x1 + x2 + . . . + xn. How can we find the variance of z? Perhaps we can
add up all the variances of xi? Well, not exactly, but we are close. We can find σ2

z using

σ2
z =

n∑
i=1

n∑
j=1

C(xi, xj) =
n∑

i=1

σ2
xi

+ 2
∑
1≤i<

∑
j≤n

C(xi, xj). (3.2.2)

We can distinguish a special case now. If the random variables x1, x2, . . . , xn are all independent, then
C(xi, xj) = 0 for every i, j (i 6= j). So then we actually are able to get the variance of z by adding up
the variances of xi.

3.2.2 The correlation coefficient

Now let’s make another definition. The correlation coefficient is defined as

ρ(x1, x2) =
C(x1, x2)
σx1σx2

. (3.2.3)

This function has some special properties. Its value is always between −1 and 1. If ρ(x1, x2) ≈ ±1, then
x2 is (approximately) a linear function of x1. If, on the other hand, ρ(x1, x2) = 0, then we say that x1

and x2 are uncorrelated. This doesn’t necessarily mean that they are independent. Two variables can
be uncorrelated, but not independent. If two variables are, however, independent, then C(x1, x2) = 0,
and they are therefore also uncorrelated.

3.3 Conditional Random Variables

In chapter 1 of this summary, we have seen conditional probability. We can combine this with functions
like the cumulative distribution function, the probability density function, and so on. That is the subject
of this part.
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3.3.1 Conditional relations

Given an event B, let’s define the conditional CDF as

Fx(x|B) = P (x ≤ x|B) =
P (x ≤ x,B)

P (B)
. (3.3.1)

Here the event B can be any event. Also, the comma once more indicates an intersection. The conditional
PDF now follows as

fx(x|B) =
dFx(x|B)

dx
. (3.3.2)

The nice thing is that conditional probability has all the properties of normal probability. So any rule
that you’ve previously seen about probability can also be used now.

Let’s see if we can derive some rules for these conditional functions. We can rewrite the total probability
rule for the conditional CDF and the conditional PDF. Let B1, B2, . . . , Bn be a partition of Ω. We then
have

Fx(x) =
n∑

i=1

Fx(x|Bi)P (Bi) ⇒ fx(x) =
n∑

i=1

fx(x|Bi)P (Bi). (3.3.3)

From this we can derive an equivalent for Bayes’ rule, being

fx(x|A) =
P (A|x)fx(x)∫∞

−∞ P (A|x)fx(x)dx
. (3.3.4)

Here the event A can be any event. The probability P (A|x) in the above equation is short for P (A|x = x).

3.3.2 The conditional probability density function

In the previous paragraph, there always was some event A or B. It would be nice if we can replace that
by a random variable as well. We can use the random variable y for that. By doing so, we can derive
that

fx(x|y) =
fx,y(x, y)

fy(y)
, (3.3.5)

where fx,y(x, y) is the joint density function of x and y. Note that if x and y are independent, then
fx,y(x, y) = fx(x)fy(y) and thus fx(x|y) = fx(x).

We can also rewrite the total probability rule. We then get

fy(y) =
∫ ∞
−∞

fy(y|x)fx(x)dx. (3.3.6)

Similarly, we can rewrite Bayes’ rule to

fx(x|y) =
fy(y|x)fx(x)

fy(y)
=

fy(y|x)fx(x)∫∞
−∞ fy(y|x)fx(x)dx

. (3.3.7)

3.3.3 The conditional mean

The conditional mean of y, given x = x, can be found using

E(y|x) =
∫ ∞
−∞

y fy(y|x) dy. (3.3.8)
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Note that this mean depends on x, and is therefore a function of x. Now let’s look at E(y|x). We know
that x is a random variable, and E(y|x) is a function of x. This implies that E(y|x) is a random variable.
We may ask ourselves, what is the mean of this new random variable? In fact, it turns out that

E(E(y|x)) = E(y) = y. (3.3.9)

3.3.4 n random variables

Suppose we have n random variables x1, x2, . . . , xn. We can then also have a conditional PDF, being

f(xn, . . . , xk+1|xk, . . . , x1) =
f(x1, . . . , xk, xk+1, . . . , xn)

f(x1, . . . , xk)
. (3.3.10)

From this, the so-called chain rule can be derived, being

f(x1, . . . , xn) = f(xn|xn−1, . . . , x1)f(xn−1|xn−2, . . . , x1) . . . f(x2|x1)f(x1). (3.3.11)
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4. Transformations

4.1 Transformations of Random Variables

Let’s suppose that we have got some random variables. We can make new random variables out of those,
using functions. How do those new random variables behave? We will take a look at that now. This
chapter of the summary is rather difficult, while it is not incredibly important. So do not stare yourself
blind on this part.

4.1.1 Finding the CDF

Suppose we have a random variable x. We can define a new variable y to be a function of x, so y = g(x).
Now we would like to know how we can find the CDF Fy(y). It can be found using

Fy(y) = P (y ≤ y) = P (g(x) ≤ y) = P (x ∈ Iy), (4.1.1)

where the set Iy consists of all x such that g(x) ≤ y. So, to find the CDF Fy(y), we first need to find Iy:
We need to know for what x we have g(x) ≤ y. The intervals that are found can then be used to express
Fy in Fx.

Let’s look at a special case. When g(x) is strictly increasing, or strictly decreasing, we have

Fy(y) = Fx(g−1(y)) for increasing g(x) and Fy(y) = 1− Fx(g−1(y)) for decreasing g(x).
(4.1.2)

Here the function g−1(y) is the inverse of g(x). It is defined such that if y = g(x), then x = g−1(y).

4.1.2 Finding the PDF

Now that we’ve got the CDF Fy(y), it’s time to find the PDF fy(y). You probably remember that the
PDF is simply the derivative of the CDF. That rule can be used to find the PDF.

Let’s consider the special case that g(x) is either strictly increasing or strictly decreasing. Now we have

fy(y) =
dFy(y)

dy
=

{
fx(g−1(y))dg−1(y)

dy for increasing g(x)

−fx(g−1(y))dg−1(y)
dy for decreasing g(x)

= fx(g−1(y))
∣∣∣∣dg−1(y)

dy

∣∣∣∣ . (4.1.3)

Note that we have simply taken the derivative of equation (4.1.2), using the chain rule. Also note that
if g(x) is decreasing, also g−1(y) is decreasing, and thus dg−1(y)/dy is negative. This explains the last
step in the above equation, where the absolute stripes | . . . | suddenly appear.

Now what should we do if g(x) is not increasing or decreasing? In this case no inverse function g−1(y)
exists. Let’s suppose that for a given y the equation y = g(x) has n solutions x1, x2, . . . , xn. Now we can
say that

fy(y) =
n∑

i=1

fx(xi)∣∣∣dg(xi)
dx

∣∣∣ . (4.1.4)

If only one solution xi is present, then this equation reduces back to equation (4.1.3).
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4.1.3 Functions of two random variables

Let’s suppose we now have two random variables x1 and x2. Also, let’s define y = g(x1, x2). In this case,
we can find the CDF Fy(y) using

Fy(y) = P (y ≤ y) = P (g(x1, x2) ≤ y) = P ((x1, x2) ∈ Dy), (4.1.5)

where the set Dy consists of all the pairs (x1, x2) such that g(x1, x2) ≤ y. To find the PDF, we can use

fy(y) =
∫ ∞
−∞

fx1,x2
(x1, g

−1(x1, y))
∣∣∣∣dg−1(x1, y)

dy

∣∣∣∣ dx1 =
∫ ∞
−∞

fx1,x2
(g−1(y, x2), x2)

∣∣∣∣dg−1(y, x2)
dy

∣∣∣∣ dx2.

(4.1.6)

4.1.4 Transformations of two random variables

Now let’s not only define y
1

= g1(x1, x2), but also y
2

= g2(x1, x2). Now we can find the joint CDF using

Fy
1
,y

2
(y1, y2) = P (y

1
≤ y1, y2

≤ y2) = P (g1(x1, x2) ≤ y1, g2(x1, x2) ≤ y2) = P ((x1, x2) ∈ Dy1,y2),
(4.1.7)

where the region Dy1,y2 is the intersection of the regions Dy1 and Dy2 . We can now find the joint PDF
by differentiating the CDF. We then get

fy1,y2(y1, y2) =
∂2Fy

1
,y

2
(y1, y2)

∂y1 ∂y2
=

∂2

∂y1 ∂y2

∫ ∫
Dy1,y2

fx1,x2
(x1, x2) dx1 dx2. (4.1.8)

There is, however, another way to find the joint PDF. For that, let’s examine the matrix

g(x1, x2)∂x
T =

[
g1(x1, x2)
g2(x1, x2)

] [
∂
∂x1

∂
∂x2

]
=

[
∂g1(x1,x2)

∂x1

∂g1(x1,x2)
∂x2

∂g2(x1,x2)
∂x1

∂g2(x1,x2)
∂x2

]
. (4.1.9)

The determinant of this matrix is called the Jacobian of g. The joint PDF can now be found using

fy
1
,y

2
(y1, y2) =

fx1,x2
(x1, x2)∣∣∣det

(
g(x1, x2)∂x

T
)∣∣∣ . (4.1.10)

The above equation also works for dimension higher than 2. In fact, it works for any pair of n-dimensional
vectors y and x for which y = g(x).

4.1.5 The multi-dimensional mean

Let’s suppose we have an n-dimensional random vector x, an m-dimensional random vector y and a
function G(x) such that y = G(x). It would be interesting to know the expectation vector E(y). It
can be found using

E(y) =
∫
Rm

yfy(y) dy ⇔ E(y
i
) =

∫
Rm

yify(y) dy. (4.1.11)

Using the right part of the above equation, you can find one component of E(y). The left part is the
general (vector) equation. Note that in both cases you need to integrate m times. Once for every
component of y.

Generally, we don’t know fy(y) though. But we do know fx(x). So to find E(y), we can first find fy(y).
This is, however, not always necessary. There is a way to find E(y) without finding fy(y). You then
have to use

E(y) = E(G(x)) =
∫
Rn

G(x)fx(x) dx. (4.1.12)
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The above equation is called the expectation law. If the function G(x) is linear (so you can write it
as G(x) = Ax + b for a constant matrix A), then the above equation simplifies greatly. In that case we
have y = Ax + b, where y = E(y) and x = E(x).

4.1.6 Multi-dimensional variance and covariance

Calculating the variance D(y) of y goes more or less similar to calculating the mean. There is a slight
difference though. While E(y) was an m× 1 vector, D(y) is an m×m matrix. To find this matrix, we
can use either of the following two equations

D(y) = E
(
(y − y) (y − y)T

)
=
∫
Rm

(y − y) (y − y)T
fy(y) dy, (4.1.13)

D(y) = D(G(x)) = E
(
(G(x)− y) (G(x)− y)T

)
=
∫
Rn

(G(x)− y) (G(x)− y)T
fx(x) dx. (4.1.14)

If G(x) is, once more, linear, we can simplify the above equation. In this case we have

D(y) = AD(x)AT ⇔ Qyy = AQxxAT , (4.1.15)

where Qyy = D(y) and Qxx = D(x). From these two matrices, we can also find the covariance matrices
Qyx and Qxy, according to

C(y,x) = Qyx = AQxx and C(x,y) = Qxy = QxxAT . (4.1.16)

Here Qyx is an m × n matrix, while Qxy is an n ×m matrix. So in the multi-dimensional situation we
do not have C(y,x) = C(x,y). However, since Qxx is symmetric, we do have Qyx = QT

xy.

4.2 The Central Limit Theorem

If we put together multiple random variables, interesting things start happening. And it has something
to do with the normal distribution. If you want to know more about it, then quickly read the chapter
below.

4.2.1 The central limit theorem

Let’s suppose we have a number of (possibly different) independent random variables x1, x2, . . . , xn. Now
let’s define a new random variable y as the sum of all these variables, so y = x1 + x2 + . . . + xn. Let’s
suppose we know the mean y and the standard deviation and σy. The central limit theorem states
that as n increases, we have

Fy(y) ≈ Φ
(

y − y

σy

)
. (4.2.1)

In words, we see that as n increases, y behaves like a normal distribution with average y and standard
deviation σy. The corresponding PDF then is

fy(y) ≈ 1
σy

√
2π

e
− (y−y)2

2σ2
y . (4.2.2)

Let’s now look at a special case. Suppose x1 = x2 = . . . = xn = x. Also, all these distributions have
mean x and standard deviation σx. In this case we can find y and σy. We have y = nx. The average of y
evidently becomes y = nx. To find the standard deviation of y, we first look at the variance of y. Since
the random variables x are independent, we find that σ2

y = nσ2
x. From this follows that σy =

√
nσx.

The random variable y thus behaves like a normal distribution with the just found mean y and standard
deviation σy.
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4.2.2 The De Moivre-Laplace theorem

Let’s suppose the random variable x is binomially distributed. So it is a discrete variable with as
mean x = np and as variance σ2

x = np (1− p). The De Moivre-Laplace theorem now states that
for certain conditions the (discrete) binomial distribution of x also starts behaving like a (continuous)
normal distribution. So,

Px(k) =

(
n

k

)
pk (1− p)n−k ≈ 1

σx

√
2π

e
− (k−x)2

2σ2
x =

1√
2πnp (1− p)

e−
(k−np)2

2np(1−p) . (4.2.3)

The condition for which the above equation is accurate is that k must be in the interval (x−3σx, x+3σx).
Of course k can’t be smaller than 0 or bigger than n.

Suppose we do n experiments, with x denoting the amount of successes. We would like to know the
chance that we have exactly k successes. We now know how to calculate that (approximately). We
simply insert k−x

σx
in the PDF of the standard normal distribution. But what should we do if we want to

know the chance that we have at least k1 successes, and at most k2 successes? In this case we have

P (k1 ≤ x ≤ k2) = Φ
(

k2 + 1/2− x

σx

)
− Φ

(
k1 − 1/2− x

σx

)
. (4.2.4)

Note the halves in the above equation. They are present because the binomial distribution is discrete,
while the normal distribution is continuous. If we, for example, want to have at least 42 successes, and
at most 54, then for the normal distribution we should take as boundaries 41.5 and 54.5.

4.3 Composed Distributions

There are some distributions we haven’t treated yet. That was because they were a bit too difficult to
start with right away. Often this was because they are composed of multiple other distributions. But
now the time has come to take a look at them.

4.3.1 The multivariate normal distribution

Suppose we have an n-dimensional random vector x with mean x and variance matrix Qxx. We say that
x has a multivariate normal distribution (x ∼ Nn (x, Qxx)) if its PDF has the form

fx(x) =
1√

det (2πQxx)
e(−

1
2 (x−x)T Q−1

xx (x−x)), (4.3.1)

where the variance matrix Qxx has only positive entries.

Let’s suppose x is 2-dimensional. If we plot fx(x), we get a 3-dimensional graph. For this graph, we can
draw contour lines (lines for which fx(x) is constant). This implies that

(x− x)T
Q−1

xx (x− x) = r2, (4.3.2)

for some constant r. The shapes we then get are ellipses. We can do the same if x is 3-dimensional.
However, we then draw contour areas, which take the shape of ellipsoids. In situations with even more
dimensions, we get hyper-ellipsoids. All these shapes are called the ellipsoids of concentration.

The shape of these ellipsoids depends on the variance matrix Qxx. If Qxx is the identity matrix In, or a
multiple of it, then the ellipsoids will be circles/spheres/hyperspheres. If Qxx is just a diagonal matrix,
then the principal axes of the ellipsoids will be the axes x1, x2, . . . , xn itself. In other cases, the axes of
the ellipsoid will have shifted.
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Many things can be derived from the PDF, for which we just gave the equation. Examples are the marginal
distributions and the conditional distributions. An interesting thing is that those distributions are, in
turn, also normal distributions. And if that wasn’t interesting enough, also all linear transformations of
a multivariate normal distribution are (multivariate) normal distributions.

4.3.2 The χ2 distribution

Let’s suppose x1, x2, . . . xn are all normally distributed random variables with mean xi and variance 1,
so xi ∼ N (xi, 1). The Chi-square distribution with n degrees of freedom, denoted as χ2 (n, λ), is now
defined as

χ2 =
n∑

i=1

x2
i . (4.3.3)

The non-centrality parameter λ is defined as

λ =
n∑

i=1

x2
i . (4.3.4)

If λ = 0, we are dealing with the central Chi-square distribution χ2 (n, 0).

The Chi-square distribution has mean E(χ2) = n+λ and variance D(χ2) = 2n+4λ. If two (independent)
Chi-square distributions χ2

1
and χ2

2
are added up, we once more get a Chi-square distribution, but now

with (n1 + n2) degrees of freedom and non-centrality parameter (λ1 + λ2).

4.3.3 The t distribution

Suppose that x ∼ N (∇, 1) and χ2 ∼ χ2 (n, 0) are independent random variables. The (Student’s) t
distribution with n degrees of freedom, denoted as t (n,∇), is now defined as

t =
x√
χ2/n

. (4.3.5)

Here ∇ is the non-centrality parameter. If ∇ = 0, we are dealing with the central t distribution.

4.3.4 The F distribution

Suppose that χ2
1
∼ χ2 (n1, λ) and χ2

2
∼ χ2 (n2, 0) are two independent Chi-square distributions. The F

distribution, denoted as F (n1, n2, λ), is then defined as

F =
χ2

1
/n1

χ2
2
/n2

. (4.3.6)

It is said to have n1 and n2 degrees of freedom. Also, λ is the non-centrality parameter. When λ = 0,
we are dealing with a central F distribution.
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5. Estimation

5.1 Introduction to Estimation

One of the powers of probability is that you can estimate the behavior of phenomena. How can we do
that? That’s something we will look at in this chapter.

5.1.1 Definitions

It often occurs that there is some phenomenon of which we want to know the behavior. Such a phe-
nomenon can be modeled as a random vector y, with a certain size m. However, we usually don’t know
the distribution of such a random variable. The PDF just isn’t known to us. But, given certain param-
eters, we can find it. In this case we can put the n unknown parameters into a vector x. Then, once x
is known, we can find the PDF of y. This PDF is written as fy(y|x). (An example could be where we
know y is normally distributed, but we don’t know the mean y and the standard deviation σy.)

Now how can we find x? The truth is, we can’t. However, by observing the phenomenon described by
y, we can guess it. Let’s say our guess x̂ (called the estimate of x) is given by some function x̂ = G(y).
Our task is to set this function G(y). Once we have done so, we can also define a new random variable,
called the estimator, as x̂ = G(y).

5.1.2 Finding a good estimator

So we now know we have to choose an estimator x̂ = G(y). How would we know what would be a
good one? There are three criteria for that. First there is the estimation error ε̂ = x̂ − x, which
is also a random variable. The estimator x̂ is said to be an unbiased estimator of x if, and only if
E(̂ε) = E(x̂−x) = 0, or, equivalently, E(x̂) = x. If the estimator x̂ is not unbiased, then we say that its
bias is E(̂ε).

Another measure of quality is the mean squared error (MSE), defined as E
(
|x̂− x|2

)
, or, equivalently,

E
(̂
ε2
)
. Of course the mean squared error should be as small as possible.

Finally, let’s look at the third measure of quality. It is defined as P (|x̂− x|2 ≤ r2), for some radius r. In
words, this is the probability that the vector ε̂ is in the (hyper-)sphere with radius r. This chance should
be as big as possible.

There are three common ways of finding an estimator. Which one to use depends on the data that you
have and the accuracy that you want. We will take a look at them in the rest of this chapter.

5.2 Least-Squares Estimation

One of the most well-known methods of determining an estimation is the least-squares estimation method.
Let’s take a look at how it works.

5.2.1 The consistent case

Let’s suppose we have a set of measurements y, having size m, and a set of unknown parameters x,
having size n. To apply the least-squares method, we assume that

y = Ax, (5.2.1)
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where the m×n matrix A is known. In words, this means that the measured parameters (in y) are linear
functions of the unknown variables (in x). However, now the question arises whether, given a (measured)
y, there is an x which satisfies the above equation. If there is, then the system is consistent. Otherwise
it is inconsistent. The inconsistent case will be treated in the next paragraph. Now we’ll take a closer
look at the consistent case.

So suppose the system y = Ax is consistent. In this case we know that there is at least one x satisfying
y = Ax. If there is exactly one solution, then this solution is our estimate x̂. It can be found using

x̂ = A−1y. (5.2.2)

The corresponding least-squares solution ŷ can be found using ŷ = Ax̂ = y.

It is, however, also possible that there are infinitely many solutions x. In this case we can’t be sure which
x to choose. This often means we need more measurement data. This is the case if the columns of A
aren’t all linearly independent.

5.2.2 The inconsistent case

Now let’s suppose the system y = Ax is inconsistent. In this case there is no solution x. We now refer
to the system as an overdetermined system, denoted as y ≈ Ax. Assuming that there are no linearly
dependent columns in A, we define the redundancy of the system as m− n.

To make sure there are solutions, we add a measurement error vector e, such that y = Ax + e. We now
want to choose e such that e2 = eT e is minimal. This is the least-squares principle. The minimal e is
denoted by ê. With ê chosen correctly, there is a solution x, called the estimate x̂. It can be found using

x̂ =
(
AT A

)−1
AT y. (5.2.3)

The corresponding least-squares solution can once more be found using ŷ = Ax̂. The difference ê =
y−Ax̂ = y− ŷ is the least-squares residual vector. The value of ê2 is a measure of the inconsistency
of the system.

The vector y generally consists of measurement data. Sometimes we know that some measurement data
is more accurate than other. That data should thus be taken into account more. For this, there is the
weighted least-squares method. In this case we don’t want to minimize e2 = eT e. This time we
should minimize eT We, where W is the weight matrix. The minimum value êT W ê is now the measure
of inconsistency of the system. The corresponding estimate can then be found using

x̂ =
(
AT WA

)−1
AT Wy. (5.2.4)

Generally W is a positive diagonal matrix. This is, however, not always the case.

5.2.3 Orthogonal projectors

Let’s take a closer look at what variables we got now. We have a measurement vector y. In the inconsistent
case y can’t be written as Ax. So we search for a ŷ close to y that can be written as Ax̂. The least-squares
residual vector ê = y − ŷ is as small as possible.

It can now be shown that ŷ and ê are orthogonal vectors. While ŷ lies in the column space of A, ê is
orthogonal to the column space of A. (So ê lies in the column space of A⊥.) Now let’s define the two
matrices PA and P⊥A as

PA = A
(
AT WA

)−1
AT W and P⊥A = Im − PA. (5.2.5)

These two matrices are orthogonal projectors. What they do is, they project vectors on the column
spaces of A and A⊥. We therefore have

ŷ = PAy and ê = P⊥A y. (5.2.6)
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5.2.4 Implementing random vectors

Previously we saw the system of equations y = Ax+e. Here, the vector y represented a series of measure-
ments. However, we can take more measurements from a phenomenon. Every time, these measurements
can take different values. So it would be wise to represent y by a random vector y. Equivalently, the
vector e also has a different value every time. So it should also be a random vector e. We thus get

y = Ax + e. (5.2.7)

We assume we have chosen our estimate x (which does stay constant during different measurements) such
that E(e) = 0 or, equivalently, E(y) = Ax. If this is indeed the case, then we say that the above linear
system is called a linear model of E(y).

From y, we can derive the random variables x̂, ŷ and ê. For that, we can use relations we actually
already know. They are

x̂ =
(
AT WA

)−1
AT Wy = x +

(
AT WA

)−1
AT We, (5.2.8)

ŷ = PAy = Ax + PAe and ê = P⊥A y = 0 + P⊥A e. (5.2.9)

And that’s all we need to know if we want to estimate what the outcome of the experiment will be next.

5.3 Best linear unbiased estimation

The second method of finding x̂ we will look at is the BLUE method. To use it, you also need the variance
matrix Qyy of y. Because the BLUE method considers Qyy, it can be a rather accurate estimation method.
Let’s find out how it works.

5.3.1 Definitions and conditions

Let’s consider the linear system of equations

E(y) = Ax. (5.3.1)

Just like in the previously discussed method, we want to find an estimate x (or more precise, an estimator
x) that corresponds to certain conditions. Before we look at those conditions, we first make some
definitions.

Let’s define the vector z (having size k) as a linear combination of x. So, z = FT x + f0, for some known
n × k matrix F and k-vector f0. Just like we want to find an estimator x̂ for x, we can also be looking
for an estimator z for z. This gives us also the relation z = FT x + f0. So to find x we might as well try
to find z. The estimator z depends on y. So let’s define G(y) such that z = G(y).

Enough definitions. Let’s look at what conditions we want the estimator z to have. First of all we want
it to be unbiased. This means that E(z) = z or, equivalently, E(G(y)) = FT x + f0. For reasons of
simplicity, we also want it to be linear. This is the case if G(y) is a linear function, and can thus be
written as G(y) = LT y + l0 for some m× k matrix L and a k-vector l0. This linearity condition can be
rewritten to two conditions, being

AT L = F and l0 = f0. (5.3.2)

Any estimator z of z that is both linear and unbiased is called a linear unbiased estimator (LUE).
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5.3.2 Finding the best linear unbiased estimator

There is one slight problem. There are many LUEs. We want only the so-called best linear unbiased
estimator (BLUE), denoted by ẑ. But what is the best LUE? We now define the best LUE (the BLUE)
to be the LUE with the smallest mean squared error (MSE). So we have

E
(
|ẑ− z|2

)
≤ E

(
|z− z|2

)
(5.3.3)

for every LUE z. Now the question arises how we can find this BLUE ẑ and the corresponding best
estimator x̂ for x. For that, we use the Gauss-Markov theorem, which states that

x̂ =
(
AT Q−1

yy A
)−1

AT Q−1
yy y and ẑ = FT x̂ + f0, (5.3.4)

where Qyy is the variance matrix of y (so Qyy = D(y)). It is interesting to note that the final value of x̂
does not depend on the matrix F or the vector f0 at all. It just depends on A and y.

Another interesting fact to note is the link with the weighted least-squares estimation method. If the
weight matrix W in the WLSE method is equal to the inverse of the variance matrix Qyy (so W = Q−1

yy )
in the BLUE method, you would find exactly the same estimator x.

5.4 Maximum Likelihood Estimation and Confidence Regions

The third method of finding x̂ uses the PDF of y. It can therefore not always be applied. But its
advantage is that it can be applied in the case where y can’t be written as Ax.

5.4.1 The condition

To make a maximum likelihood estimation (MLE) we need to know the PDF of y, given a certain
unknown vector x. We write this as fy(y|x).

Now suppose we have some measurement y. The idea behind the MLE is to choose the value of x for
which it is most likely that y occurred. The likelihood of y then is fy(y|x). Note that this likelihood
is a function of the unknown vector x. This likelihood should be maximized. The corresponding x, now
denoted as x̂, is the maximum likelihood estimation.

5.4.2 Finding the maximum likelihood estimation

There is no general method of finding the MLE. For relatively easy PDFs of y, simple logic can often
lead to the MLE. For more difficult PDFs, finding the MLE might even require complicated (numerical)
computation.

If, however, fy(y|x) is sufficiently smooth, then x̂ can be found using the conditions

∂xfy(y|x̂) = 0 and ∂2
xxT fy (y|x̂) < 0. (5.4.1)

If the PDF simply gives a scalar result, then the above states that the first derivative must be zero,
indicating that there is a local minimum/maximum. The second derivative must be smaller than zero,
indicating it is in fact a maximum.

If, however, the PDF returns a vector, then things are a bit more difficult. Then the first condition
requires that the gradient has to be zero. The second condition states that the so-called Hessian
matrix (the matrix of derivatives) needs to be negative definite. In other words, all its eigenvectors need
to be negative.

Finally, when multiple values satisfy the above conditions, just insert their values x̂ into fy(y|x̂) and see
which value gives the highest likelihood of y.
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5.4.3 Confidence Regions

Suppose we have finally acquired a good estimate ŷ of y (using any of the three discussed methods).
How can we indicate how good this estimate actually is? We can do this, using confidence regions.

Suppose we have a region S. For example, S can be defined as the interval [ŷ− ε, ŷ + ε]. We now take a
new measurement y. Let’s examine the chance that y is in the region S. This chance then is

P (y ∈ S) = 1− α. (5.4.2)

We now say that S is a 100(1− α) percent confidence region. (For example, if α = 0.01, then it is a
99% confidence region.) Also 1− α is called the confidence coefficient.
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6. Hypothesis Tests

6.1 Basic Concepts of Hypothesis Tests

We will now examine hypothesis tests. To become familiar with them, we first look at some basic concepts.
After that, we consider the simple case where there are only two hypotheses.

6.1.1 Definitions

Let’s suppose we have a random vector y. Its PDF is fy(y|x), where the vector x is not known. We can
now assume a certain value for x. Afterwards, we can use a measurement y to check whether our original
assumption of x made sense. We now have a statistical hypothesis, denoted by H : y ∼ fy(y|x).

The (process) state space contains all the possible values for x. Often an hypothesis H states that
x has a certain value. It now completely specifies the distribution of y. It is therefore called a simple
hypothesis. H can also state that x is among a certain group of values. In this case y is not completely
specified. H is then called a composite hypothesis. In this course we only deal with simple hypotheses.

6.1.2 The binary decision problem

Usually, when you examine hypotheses, you have two hypothesis. It is possible to have multiple hypothesis
H1,H2, . . . ,Hn, but we will treat that later. For now we assume we have just two hypotheses. First there
is the null hypothesis H0 : y ∼ fy(y|x0), representing the nominal state. Second, there is the
alternative hypothesis Ha : y ∼ fy(y|xa). Both distributions state that the random variable y has a
certain PDF fy.

Let’s examine the binary decision problem. We have a single observation y. Based on this observation,
we have to choose whether we accept H0 (assume it to be correct) or reject it. The procedure used to
decide whether to accept H0 or not is called a test.

How do we decide whether to accept H0? For that, we define the critical region K. If y ∈ K, then
we reject H0. On the other hand, if y 6∈ K (or equivalently, y ∈ Kc), then we accept H0. We can also
define the test statistic T = h(y), where T is a scalar and h(y) some function. Corresponding to the
(multi-dimensional) region K is also a scalar region K. We now reject H0 if T ∈ K and accept H0 is
T 6∈ K.

6.1.3 Four situations

In the binary decision problem, we have two options: accept or reject. In this choice, we can be either
right or wrong. There are now four possible situations:

• We reject H0, when in reality H0 is true. So we made an error. This is called the type 1 error.
Its probability, called the probability of false alarm α, can be found using

α = P (y ∈ K|H0) =
∫

K

fy(y|H0) dy =
∫

K

fy(y|x0) dy, (6.1.1)

where the latter part is just a different way of writing things. α is also called the size of the test,
or the level of significance.

• We accept H0, when in reality H0 is false. This time we made a type 2 error. The so-called
probability of missed detection β is given by

β = P (y 6∈ K|Ha) =
∫

Kc

fy(y|Ha) dy = 1−
∫

K

fy(y|Ha). (6.1.2)

22



• We accept H0, and were right in doing so. The so-called probability of correct dismissal (which
doesn’t have its own sign) is now given by

P (y 6∈ K|H0) =
∫

Kc

fy(y|H0) dy = 1−
∫

K

fy(y|H0) dy = 1− α (6.1.3)

• We reject H0, and were right in doing so. The probability of detection, also called the power
of the test γ, now is

γ = P (y ∈ K|Ha) =
∫

K

fy(y|Ha) dy = 1− β. (6.1.4)

6.1.4 Defining the critical region

The size of α, β and γ depends on the critical region K. It is our task to define K. According to what
criteria should we do that? Often, in real life, we want to minimize costs. A false alarm has a certain
(positive) cost c0, while a missed detection has a certain (also positive) cost ca. The average cost in an
experiment, also called the Bayes risk, is then c0α+ caβ. (We assume a correct choice has no costs, nor
any special benefits.) We want to find the K for which the costs are at a minimum. (In fact, the Bayes
criterion states that the Bayes risk should be minimized.) So we want to minimize

c0α + caβ = c0

∫
K

fy(y|H0) dy + ca

(
1−

∫
K

fy(y|Ha) dy

)
= ca +

∫
K

(
c0fy(y|H0)− cafy(y|Ha)

)
dy.

(6.1.5)
We know that ca is constant. So we should minimize the integral on the right. Note that an integral is
something that adds up infinitely many numbers. By choosing K, we choose what numbers this integral
adds up. We want to minimize the value of the integral. So we should make sure it only adds up negative
numbers. (Any positive number would make its value only bigger.) So, we only have y ∈ K if

c0fy(y|H0)− cafy(y|Ha) < 0. (6.1.6)

The critical region K thus consists of all y for which

fy(y|H0)

fy(y|Ha)
<

ca

c0
. (6.1.7)

In other words, if the above equation holds for the measurement y, then we reject H0.

6.1.5 A-priori probabilities

Let’s complicate the situation a bit more. Previously we have made an assumption. We assumed that
we didn’t have a clue whether H0 or Ha would be true in reality. Let’s suppose we do have a clue now.
The probability that H0 is correct (and thus that x = x0) is P (x = x0). (Abbreviated this is P (x0).)
Similarly, we know that the chance for Ha to be correct is P (xa). The probabilities P (x0) and P (xa) are
called a-priori probabilities — probabilities we already know before the experiment. We know that
either H0 or Ha is true, so we have P (x0) + P (xa) = 1.

If H0 is true, then we have a chance α to lose c0. Similarly, if Ha is true, then we have a chance β to lose
ca. Therefore our average costs now become P (x0)c0α + P (xa)caβ. From this we can find that y ∈ K
(we should reject H0) if

fy(y|H0)

fy(y|Ha)
<

P (xa)ca

P (x0)c0
. (6.1.8)

If we don’t have a clue which hypothesis will be correct, then P (x0) = P (xa) = 1/2. Note that, in this
case, the above equation reduces to the result of the previous paragraph.
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6.2 Multiple Hypothesis

Previously we have only considered two hypotheses, being H0 and Ha. But what should we do if we have
p hypotheses H1,H2, . . . ,Hp? How do we know which one to choose then? Let’s take a look at that.

6.2.1 Deciding the hypothesis

First we will make a few definitions. Let’s define the discrete decision δ as our choice of vector
xi. Also, there is the cost function C(x, δ) (not be confused with the covariance operator). Suppose
we accept hypothesis Hj (and thus δ = xj), but in reality we have x = xi. In this case our costs
are C(x = xi, δ = xj). This can also be written as C(xi,xj), or even as Cij . We also assume that
C(xi,xi) = 0. In words, this says that if we accept the right hypothesis, we don’t have any costs.

Suppose we have a measurement y. It is now rather difficult to decide which hypothesis we accept. We
therefore make an assumption. We assume that the costs for all errors are equal. (So Cij = constant
for all i, j with i 6= j.) This is part of the so-called Maximum A Posteriori probability criterion
(MAP). Now we can decide which hypothesis to accept. We should accept Hi if for all j 6= i we have

fy(y|xj)P (xj) < fy(y|xi)P (xi). (6.2.1)

So we should accept Hi if the number i gives the maximum value for fy(y|xi)P (xi). This is, in fact,
quite logical. If costs don’t matter, we should simply choose the hypothesis which gives us the biggest
chance that we’re right. This also causes the chance that we’re wrong to be the smallest.

6.2.2 Acceptance regions

Given a measurement y, we now know which hypothesis Hi to choose. Let’s look at all y for which we
will accept Hi. These y form the acceptance region Ai. We can also look at this definition the other
way around: If y ∈ Ai, then we accept Hi.

Let’s ask ourselves something. Suppose that in reality Hi is true. What is then the chance that we accept
Hj? Let’s call this chance βij . Its value depends on the acceptance region Aj and can be found using

βij =
∫

Aj

fy(y|xi) dy. (6.2.2)

The chance that we make any wrong decision (given that Hi is true) is denoted as βi. It can be found
by simply adding up all the βijs with i 6= j. So,

βi =
p∑

j=1,j 6=i

βij (6.2.3)

On the other hand, the chance that we make the right decision (given that Hi is true) is written as γi.
Note that we have γi = 1− βi. (You might see that we also have γi = βii. This is correct. However, the
sign β is normally used to indicate errors. So that’s why we use the sign γi now, and not βii.)

You probably already expect the next question we will ask to ourselves. What would be the chance that
we are wrong in general? This chance, called the average probability of incorrect decision, can be
found using

p∑
i=1

P (xi)βi =
p∑

i=1

P (xi)
p∑

j=1,j 6=i

βij

 =
p∑

i=1

P (xi)
p∑

j=1,j 6=i

∫
Aj

fy(y|xi) dy

 . (6.2.4)

If the acceptance regions are well defined, then this chance is minimal.
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6.3 Other Methods of Testing

We just saw one way in which we can choose a hypothesis. Naturally, there are more ways. In this part
we will examine another way to choose from two hypotheses H0 and Ha.

6.3.1 The simple likelihood ratio test

You probably remember the maximum likelihood estimation (MLE) method, from the previous chapter.
In that method, we looked for the x for which fy(y|x) was maximal. We can do the same now. However,
now we only have two possible values of x, being x0 and xa. We thus accept H0 if fy(y|x0) > fy(y|xa).
We reject H0 if

fy(y|x0)

fy(y|xa)
< 1. (6.3.1)

The critical region K can be derived from the above criterion. This testing method is called the maxi-
mum likelihood test.

Let’s adjust the above method slightly. Instead of taking 1 as a boundary, we now take some (positive)
constant c. We thus reject H0 if

fy(y|x0)

fy(y|xa)
< c. (6.3.2)

We now have arrived at the simple likelihood ratio (SLR) test.

6.3.2 The most powerful test

We find another way of testing when we apply the Neyman-Pearson testing principle. To apply this
principle, we should first give the probability of false alarm α (the size of the test) a certain value. We
then examine all tests (or equivalently, all critical regions K) with size α. We select the one for which
the probability of missed detection β is minimal. (Or equivalently, the one for which the power of the
test γ is maximal.) The selected test is called the most powerful (MP) test of size α.

Let’s take another look at the conditions. The value of α should be set, and the value of γ should be
maximal. Now let’s look at the simple likelihood ratio test. We can choose our ratio c such that the test
has size α. This makes sure the first condition is satisfied. Now comes a surprising fact. The SLR test
also always satisfies the second condition. In other words, the SLR test is always the test with maximal
γ — it is always the most powerful test.

So, although we may have believed we had two new testing methods, we only have one. But we do always
know which test is the most powerful one: the simple likelihood ratio test.
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