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1 Solving a problem in 7 steps

1.1 To read

So what is a good strategy to solve a statics problem? The first thing you should do, is read the problem
carefully. It’s a very common mistake to miss an important word in the problem, which creates an entirely
different problem. So make sure you read the problem well.

1.2 To draw

The next thing you should do is draw a figure of the problem. Especially for 3D problems this may be
difficult, because it’s often hard to draw them in a clear way, but try to draw them anyway. When you’ve
drawn the problem, try to draw ALL of the forces (and torques, if there are any torques without a force)
acting on the object. This is a very important part. For every part in the figure you should ask yourself
the question ”what forces can be applied on this point?”. If the answer is ”none”, you don’t have to draw
any forces. If you’re still doubting whether to draw a force or not, just draw it. It might turn out to be
0 eventually, but it’s better to draw a force that does not exist, than to not draw a force that does exist.

1.3 To assign names

So now you’ve got all of the forces. To solve the problem, you should probably find the magnitude or
direction of some force or torque, because that’s the case with a lot of statics problems. The first thing
you ought to do, is to make sure the variable you ought to calculate has a name. Also all the other
forces present, which play a role in the problem (which is often the case, otherwise the forces wouldn’t
be present), should be given a name. This name can, and should be rather simple, like FA for the force
in point A.

Another thing that you could do (this is helpful in most problems, but there are a few exceptions), is
dissect all the forces along a coordinate system. Give all those dissected forces logical names too. For
example, the dissection of force F1 along the x-axis can be called F1;x.

1.4 To plan

You shouldn’t be calculating just yet. What you now should do, is look very carefully at the figure you’ve
drawn (or has been drawn for you). Ask yourself the question ”What kind of formulas can I derive from
this data?”. Don’t derive the formula just yet, but just wonder what variables will be in the formula, and
whether it will be an easy formula. If this is the case, remember it, so you might even write down the
formula later. The reason why this is so important, is so you can start planning how you will get your
solution in an easy way. You don’t want to end up with 20 formulas and get lost in them. Small errors
are often made, so the chance to make them should be minimized.

When you’ve looked at the problem for a little while, and got quite a good idea of the possible formulas
you can use, you can continue. Try to ask yourself which variable you can derive from which formula
(or group of formulas in difficult cases). Then go step by step towards the variable you were supposed
to calculate to solve the problem. If you, for example, want to find FC , and you know that you can use
equation 1 to find FA from known data, equation 2 to find FB from FA and known data, and equation 3
to find FC from FA and FB , you have solved the problem, without still having written down any formulas!
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1.5 To formulate

And now comes one of the most important parts: finding and writing down formulas. If the body is in
equilibrium, you can always use the rules that the forces and torques are 0: Fx = 0, Fy = 0, T = 0
(for every center of rotation!). In 3D you even got more formula’s (6 of them to be exact). You have
to use these data, and any other data that’s noted in the problem (that’s why you were supposed to
read it so well!) to find and write down all the formulas you need. Examples of these formula’s are:
F1 − 2 ∗ F2 + F3 = 0. Or aF1√

a2+2b2
− bF2√

2a2+b2
= 0 (I never said they would be easy). Now you know why

you had to give every force a name: so you can put the values of them in formulas and equations. If you
run into any distance or angle that you need to use in a formula, but doesn’t have a name yet, just give
it a name.

Next to the amount of values you do know, there is a certain amount of unknown variables in the formulas
you just stated. If the number of formulas is equal to the number of unknown variables in the formulas
(or greater, but this doesn’t occur often), then you can solve the problem by playing around with the
formulas. However, if you do not have enough formulas, take a closer look at the problem, and at the
picture you’ve drawn, to see if you can derive another different formula, possibly by choosing a different
center of rotation.

An exception to the stated rule, that you need the same amount of formulas as unknown variables, is the
following: When you need to express a certain value in another one, you have to end up with 1 equation,
containing 2 unknown variables. In the previous case you always needed to end up with 1 equation,
containing only 1 unknown variable. So when you need to end up with a certain variable expressed in
another one, the amount of formulas should be (at least) the amount of unknown variables minus 1.

1.6 To calculate

And only in the end, we start calculating. We have a number n formulas and the same amount of variables
(hopefully). We should solve that now. When you don’t have the mathematical skills to use all kinds
of fancy tricks, it’s just a matter of isolating a single variable at a time, and substituting it in all other
functions, to find the final answer, step by step. Take your time and always double check whether you
solved the formulas in the right way.

1.7 To evaluate

When you’ve done all the maths in the equations, you should have a final answer. A good idea is to take
another look at the picture to see whether it’s a possible and reasonable value. If it is, you probably have
the right solution. If it isn’t, try to find out why. Have you made a wrong calculation? Or did you draw
the picture in the wrong way?

2 How to handle 3D problems

3D problems are rather tricky. You can’t draw them well on a 2D sheet, which makes it a bit annoying.
3D problems can be very fun though. You just have to be able to imagine the problem in a good
3-dimensional way, however that is a quality some people have and others do not. But training can help.

2.1 Dissect forces (and of course naming them)

The first thing you often should do is name the forces and dissect them along the axes. But this is slightly
more difficult than in 2D problems. There are 3 axes now, so how do you do this?
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The easiest way is to make use of relations in sides of triangles. A very useful formula I often use is:

Fr;x

lr;x
=

Fr;y

lr;y
=

Fr;z

lr;z
=

Fr

lr
(2.1)

Looks great, but what are the meanings of those variables? Suppose there is a two-force member r with
length lr, and a force Fr in it. To know Fr;x (the component of Fr pointing along the x-axis), you have
to know lr;x, the length which the two-force member spans in the direction of the x-axis.

A small example might help. Suppose there is a rope (a two-force member) under a tension of Fr = 100N ,
and it goes from point (0,0,0) to point (2,3,6), thus it spans 2m in x-direction, 3m in y-direction and 6m
in z-direction. So the total length of the rope is lr =

√
22 + 32 + 62 = 7m. Now applying the previous

formula results in:
100
7

=
Fr;x

2
=

Fr;y

3
=

Fr;z

4
(2.2)

It is now quite easy to find the component of the two-force member in the direction of all axes. So
dissecting forces along axes isn’t so difficult really, not even in 3D or 4D, but 4D is something we won’t
be talking about. And when you’ve dissected forces, you can simply add them up in the way you’re used
to in 2D problems, as long as you’ve got the signs right.

2.2 But what about torques?

Now the next question arises, how do you use torques? That is quite tricky, until you get the hang of it.
In 2D you rotate about a point. As you know a point is 1-dimensional. When we go to 3 dimension, we
rotate about a 2-dimensional point, which is in fact a line. So we rotate about a line.

Suppose we have a line which we’ll be rotating about. How do we do that? We first have to know which
forces even cause a torque. In 2D there is a rule that says that a force of which the line of action goes
through the point of rotation has an arm of 0. In 3D that’s exactly the same, except for the fact that
now the line of action of a force has to go through the line of rotation, for the force to have an arm of 0.
There is just one ”exception” to this rule (even though mathematicians don’t find this an exception). A
line which is parallel to the line of rotation has no arm too. (Mathematicians often say that two parallel
lines cross each other in exactly one point infinitely far away. Don’t ask them whether that point is to
the left or to the right, because they don’t know.) Anyway, forces with a line of action parallel to the
line of rotation have no arm and thus cause no torque.

To calculate the torque caused by a force, you have to find the magnitude of the force and the arm of
it. First make sure all the forces are dissected along axes perpendicular to the line of rotation (in most
cases it’s handy to choose a line of rotation parallel to 1 of the existing axes). The arm of the force is
the minimal distance between the line of action of the force, and the line of rotation. This might sound
a bit confusing, but if it does, just draw it on a paper and it’ll make sense.

So, calculating torques isn’t so difficult either. If you do calculate torques, do make sure that you choose
a clever line of rotation. This is incredibly important, and might safe you a lot of work, so it might be
well worth it to stare 5 minutes at a drawing looking for the right line of rotation, instead of immediately
losing yourself in calculations leading to nothing.

2.3 Equilibrium equations in 3D

As you know (or should know), there are 3 equilibrium equations in 2D-situations. You that Fx = 0,
Fy = 0 and T = 0. In 3D, there are more equilibrium equations. There are 6, to be exact. You can guess
the first three: Fx = 0, Fy = 0 and Fz = 0.

Torques are something different though. Instead of rotating about a point, you rotate about a line. In
2D-situations, any point is just a point, but in 3D situations, lines have a direction (points don’t). So
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instead of having 1 torque equation, you got 3: Tx = 0, Ty = 0 and Tz = 0. With Mx, we mean the
torques about the x-axis or a line parallel to the x-axis. It is of course also possible to take the torque
about a line not parallel to any of the axes. That will work out eventually (as long as you don’t take
torques about two lines that are parallel, since that will give the same equations), but it will make most
statics problems rather complicated, so it is not advised.

3 Truss structures and frames

Truss structures can be incredibly difficult things to handle, and the only way to be able to handle them
well, is to practice a lot. But we’re going to try to state some general things about them anyway.

3.1 Cutting

When calculating with truss structures, it’s always the trick to make the right cut. By doing this, you
cut the structure in 2 or more parts, and every part must be in equilibrium. The advantage of this is
that the internal forces of both parts can be ignored, and only the forces acting on the parts itself (which
aren’t many, as long as you’ve made the right cut) have to be calculated with.

So the important question usually is, where to make a cut? It all depends on the truss structure, which
comes in a variety of shapes, and on the variable you need to calculate. So I can not give general rules
about it. It is however important to make a cut in such a way, such that there are as few unknowns as
possible.

3.2 Important things to remember

Something you should remember, is that you can only cut through two-force members! Other members
have a normal force, a shear force, and a bending moment, but two-force members can only have a
normal force, which makes them ideal for cutting through. Note that a two-force member is usually a
bar between two hinges, certainly not containing any hinges or half-hinges itself.

However, another important and rather logical rule is that, if you need to know the tension/compression
in a member, you should always make at least a cut through that member once, because otherwise, you
won’t have any equation with that unknown (which you must calculate) in it.

And the third important rule is to always assume there is tension in a two-force member. If the size of
the tension turns out to be some negative number, you automatically know there is compression, and
you also automatically have the right sign for the compression in that force. It’s quite convenient. But
more about this is said in the chapter ”Using signs”.

3.3 Looking at hinges

Next to cutting through two-force members, another way of calculating forces in members is by looking
at the hinges. For every hinge, the equilibrium equations Fx = 0 and Fy = 0 apply (note that no bending
moments can act on a hinge). So you have to look for a hinge, of which you know all the forces acting
in a certain direction, except for 1. Then by using the equilibrium equation, that unknown value can be
calculated. By doing this over and over again (sometimes even up to 30 times in a problem) it is possible
to find the force in every member in the entire structure. This can be an especially handy method for
structures containing only two-force members, despite the fact that it is a lot of work.

But if non-two-force members are connected to a hinge, the situation can get difficult. The best advise
is to avoid such situations. But if this is impossible, it is important to know that non-two-force members
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exert both a force tangential to the member, as a force perpendicular to it. Those forces can sometimes
be found by applying the 3 equilibrium equations (Fx = 0, Fy = 0 and M = 0) on the non-two-force
member. But such situations are best to be avoided.

3.4 0-force members

Next to two-force members, also 0-force members can be present in a truss structure. Suppose that there
are 3 two-force members (members A, B and C) connected to a hinge, of which members A and B point
in the same direction. If you take the sum of the forces on the hinge in the direction perpendicular to
A and B, you will find an equation saying something like kFC = 0 (where k is any constant unequal to
0, depending on the angle between C and A or B). Thus FC is zero, and C is a 0-force member. The
first thing you can do, when looking at a truss, is detecting 0-force members. However, when there are
hinges present to which non-two-force members are connected, the situation gets different, and this trick
can often not be used anymore.

3.5 Planning

But what is most important while calculating with trusses (well, preferably before calculating) is to plan.
This is so important, that I made this a separate paragraph. Don’t write down any equation before you
have a clue how you can solve the problem. Ask yourself questions like ”if I make a cut there, what kind
of equation do I get? What variables does it contain? How many of them do I know? Can I easily find
the variables I don’t know?”. This is quite similar to the planning part in ”Solving a problem in 7 steps”,
which you might want to read, if you haven’t already.

4 Using signs: always a difficult thing

When you’re calculating all kinds of formulas, there’s always the matter whether to substract values from
eachother, or to add them up. There is a method which saves you that trouble, which works in normal
coordinate systems (positive x-axis pointing right, positive y-axis pointing up). If you have to define a
coordinate system yourself, it is often handy to define such a coordinate system, since it is most often
used. (In later chapters we will also assume such a coordinate system is used.)

4.1 Which direction is positive, and which is negative?

First, I just state the following things: To the right (along the x-axis) is positive. Upward (along the
y-axis) is positive. To the left (along the x-axis) is negative. Downward (along the y-axis) is negative.
A counter-clockwise torque is positive. A clockwise torque is negative. All these rules are important,
otherwise I wouldn’t write them.

4.2 What’s the use of it?

So what’s the use of this rule? As long as you always use these values for any forces along the axes
(when you dissect a force along axes, you always have to check the sign again, but you don’t have to do
it during calculations, which is the huge advantage of this method), you don’t have to worry about signs
or directions of forces or torques, simply because you stated the rules above.

Adding forces up is now a lot easier. You just have to put a plus between all the forces. When the force
is negative, it will automatically get subtracted, because of its sign, so there’s no need to worry about
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that. For example, just write: F5 = F1 + F2 + F3. When, for example, F2 points downward, you know
its value is negative, and you don’t have to write: F4 = F1 − F2 + F3.

4.3 But what about torques?

Even when calculating torques, this method works. As you know, you calculate a torque T with the
formula T = d F , where F is the force and d is the distance between the force and the center of rotation.
But for this method to work, you also have to make sure the distance d is negative if it’s pointed downward
or to the left. This is quite important, and works really well if you’re too lazy to ask yourself whether a
force is directed clockwise or counterclockwise.

But I still haven’t told you another technique to calculate torques. You simply have to use the cross
product, which you might know from vector mathematics. For every force F , the torque T of the force
is equal to:

M = d× F =
[
dx

dy

]
×

[
Fx

Fy

]
= dxFy − dyFx (4.1)

The minus here is one of the few minus’s you see in this method, which makes it ever more important.
You also should keep in mind the order in which to multiply d and F . This is because d× F = −F × d.
Of course if you already dissected all the forces along the axes, you don’t have to use the cross product.

But you still might be wondering, why is the minus there? Suppose dy is positive, and Fx is negative.
Then the torque is directed counter-clockwise, so it must be positive. But dy Fx is negative, so there
must be a minus sign. In any other case you will also conclude that the minus sign ought to be present.

4.4 Two-force members

Two-force members are an important thing in statics when trusses are present. But how to handle signs
in that case? There is also a simple rule for that: assume tension. Tension is positive and compression
negative, so if you assume there is tension, you always wind up with the right sign.

But what if you have a two-force member FA, and want to dissect the force along the axes to find FA;x

and FA;y? There is a quite simple rule for that. Assume that the two-force member you’re dissecting is in
tension. If the tensile force points upward (or left-upward or right-upward), then the vertical component
FA;y has the same sign as the two-force member FA. If it points downward, FA;y has a different sign
than FA. The situation is analog for the horizontal component FA;x.

But do remember that tensile forces, when present in two-force members, point inward. Most people find
this strange, because an outward force is necessary to put a two-force member in tension. This is true,
but the force we’re talking about is not the force an object is acting on the two-force member, but the
force that the two-force member is acting on an object. And according to Newton’s third law, this force
is oppositely directed, and thus points inward.

4.5 The conclusion

So by applying this rule in a very consistent way (forget it once, and you’ll screw up your entire solution,
pardon me for saying it), you don’t have to worry about signs at all. At the end of a difficult series
of calculations, you, for example, only have to conclude: ”oh, the sign is negative, so the torque is
clockwise!”. Isn’t it easy?

By the way, this is just a method of getting rid of those awful problems with signs and such. If you
already have an own method which serves you really well, please use it! This is just a useful method for
those people who just keep having trouble with the signs, and have no idea how to solve it.
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5 Distributed Loads

Distributed loads don’t have to be difficult, as long as you know how to deal with them. It’s all about
replacing them by normal forces, so you can use the normal statics rules on them. There are multiple
kinds of distributed loads. We’ll handle the simple ones first.

5.1 Constant distributed loads

Constant lineair loads are quite easy to handle. You can simply replace them by a normal force. As you
probably should know, the resultant force caused by a distributed load is equal to the area under the
distributed load. If the size of the load is q (N/m) and the length is a (m), then the size of the load is a q
(N). Interesting here, is to note the units of the values. The position of the resultant force of the load is
simple too: right in the middle of the distributed load.

However, when there are hinges in the field of a distributed load, you may not always replace the entire
distributed load by a resultant force, but have to split the distributed load up in two parts, and find a
resultant force for every separate part. This is only necessary when you make a cut through the hinge
though, but there may be a very few small exceptions to this rule.

5.2 Lineair distributed loads

Sometimes distributed loads are lineair, and usually they have the shape of a triangle. It is a bit more
difficult to replace them by a resultant force, but it’s nevertheless possible. The size of a distributed load,
which ranges from 0 to q (N/m) and has length a, is simply 1

2a q, which is the area of the triangle. The
resultant force isn’t in the middle of the load, but it’s on 2

3 of it, or of course at 1
3 if you turn the triangle

around, and have a value of q on the left and 0 on the right of the distributed load.

5.3 Combined lineair and constant loads

Sometimes lineair distributed loads don’t have the shape of a triangle, but go from q1 to q2. If this is the
case, you can simply cut the distributed load up in 2 parts, of which one has the shape of a rectangle (and
thus is a constant distributed load with size q1 (assuming q1 < q2, otherwise it’s q2)) and the other one
has the shape of a triangle, which we also have previously discussed. You only have to find the resultant
force of each of the 2 distributed loads. After that you may simplify it as mush as you wish.

5.4 Other distributed loads

There are also other distributed loads. These are quite difficult to handle. If there is no data about the
shape/size of the distributed load, you can’t calculate with it, of course. But sometimes there is a formula
which gives the size of the distributed load on a point x, or sometimes you have to find that formula
yourself. Let’s do an example. Suppose D(x) = −x2 + 6x, where D(x) is the size of the distributed load,
and x ranges from 0 to 6.

Since the resultant force of a distributed load is equal to the area under the distributed load, the resultant
force can be calculated using an integral. So:

FR =
∫ 6

0

D(x)dx =
[
−1

3
x3 + 3x2

]6

0

= 3 · 36− 1
3
· 216 = 36 (5.1)

Now we have found the resultant force, so we need to know where it applies. For that, we take the torque
about point 0. Since T = F d where F is the force and d is the arm, we know that the torque caused by
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the distributed load at point x is xD(x). So we can calculate T of the entire distributed load, around
point 0:

T0 =
∫ 6

0

D(x) x dx = [−1
4
x4 + 2x3]60 = 432− 324 = 108 (5.2)

So the torque around point 0 is 108, while the resultant force itself is 36. The resultant force must
therefore apply at a distance T

F = 108
36 = 3 from point 0. In this case it is in the middle of the distributed

load, which is quite logical because the shape of it was a symmetric parabola. Of course this isn’t always
the case. But this example does show how to calculate the resultant force of a strange distributed load.

6 Sections

Shear forces and bending moments aren’t difficult, as long as you got an easy method to calculate them.
In this chapter I just explain a method. Use it if you find it handy, and otherwise just use the method
you’re used to.

6.1 The convention

The most important thing is the convention we’re using. First we’ll discuss the normal force convention.
But you probably already know that. Tension is positive and compression is negative.

The shear force sign convention is not that difficult either. There are 2 kinds of shear forces. The first
one (which I’ll call Z) has a downward force on the left, and an upward force on the right. The other one
(which I’ll call S) is exactly the opposite. The convection is: the Z-type shear force is positive and the
S-type is negative. In diagrams, positive is drawn above the x-axis.

We also have a convention for bending moments. Suppose a bar bents in such a way that it is shaped as
a hill, then it is negative. If it bends in the shape of a valley, then it is positive. To keep things simple,
we still draw positive bending moments upward in diagrams.

6.2 Normal forces

Suppose we want to know the normal force in a point B. The most simple way to calculate a normal
force in a point B, is to look at all the horizontal forces acting on the object on one side of point B. Add
them up, while taking forces pointing away from B (thus tensing the object) positive, and forces pointing
towards B negative.

When there is a structure which is not a straight line, things can get a little bit more complicated. Just
draw a line tangential to the structure at point B. When calculating the shear force, only the forces
parallel to that line should be added up. (This does mean you might have to dissect some forces.)

6.3 Shear forces

Shear forces aren’t difficult to calculate either. When calculating a shear force in a point B, simply
look at all the vertical forces on one side of point B. If we look at the left side, we can simply add up
all the forces, which gives our shear force directly (note that negative forces automatically should get
subtracted). If we look at the right side, we should take upward forces negative and downward forces
positive to get the shear force. In the end, a positive shear force indicates a Z-type shear force, and a
negative shear force indicates an S-type shear force, as discussed in the previous paragraph.
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When there is a structure which is not a straight line, things can get a little bit more complicated. Just
draw a line perpendicular to the structure at point B. When calculating the shear force, only the forces
parallel to that line should be added up.

6.4 Bending moments

Calculating bending moments isn’t very difficult either. When calculating a bending moment in a point
B, we look at all the forces and torques acting on the object on one side of it. The bending moment
can then be easily calculated by adding up all the external torques on one side, and the torques caused
by the forces on that side. One very important rule here, is that upward forces cause positive torques
and downward forces cause negative torque. This implies for both the left and the right side of point B.
(To be exact, when you’re looking to forces on the left, clockwise counts as positive, and when you’re
looking on the right, counter-clockwise counts as positive.) A positive bending moment number indicates
a valley-type bending moment, while a negative bending moment indicates a hill-type bending moment.

7 Diagrams

A diagram is just a visual representation of the normal force/bending moment/shear force in the entire
structure. Drawing them doesn’t have to be difficult. But before you start drawing, you first have to
make sure that you have a clear drawing of the object, in which all the forces and torques are drawn. If
you miss one force, it will mess up your entire diagram. We will discuss a few methods to draw the three
diagrams now.

7.1 Normal force diagram

To draw a normal force diagram, you first ought to make sure you know the normal force at one point
in the diagram. (On the edges of an object, the normal force is usually 0.) Draw that point in the
diagram. Then, starting from that point, you ”travel” over the object. It is often wisest to travel from
left to right. The normal force in the object stays constant (so draw that too!), until you run into a
force (or when the structure bends, but we’ll come to that later, we assume a straight rigid bar now).
Dissect the force into 2 components, one perpendicular to the structure, and one tangential to it. The
perpendicular component doesn’t effect the normal force diagram (it does effect the shear force diagram),
but the component tangential to the structure does effect the normal force. You should look at the effect
this component has on the part of the structure you’re ”traveling” to. If the force is pointing in the
direction you came from, it is tensing the part of the structure you’re traveling to, thus it’s positive,
and the normal force diagram should go up with the magnitude of the component. If the component is
compressing the part of the structure you’re traveling to, it is negative, and the normal force diagram
should go down. In table ?? is an overview of the sign convention.

If you run into a distributed load tangential to the structure (note that most distributed loads are
perpendicular to the structure, and therefore do not effect the normal force diagram), you should draw
that in the normal force diagram too. The sign convention is identical as discussed previously, but the
diagram doesn’t ”jump” up. Instead, the normal force diagram slowly goes up, and the slope of the line
with which it goes up is equal to the distributed load.

7.2 Shear force diagram

Just like with the normal force diagram, you ought to make sure you know the shear force at one point.
Then you once more travel along the structure and look at how the value of the shear force changes.
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Normal force diagram Shear force diagram
Traveling Force pointing left Force pointing right Force pointing up Force pointing down

Left to right + - + -
Right to left - + - +

Table 7.1: Normal/Shear force diagram traveling overview (A plus indicates the diagram goes up).

It’s easiest to travel from left to right along the structure. Every time you run into a force, dissect it,
as discussed in the previous paragraph. The component perpendicular to the structure effects the shear
force diagram. If it points up, the shear force diagram should go up, and if it points down, the shear
force diagram should go down. That’s rather easy. However, if you’re traveling along the structure from
right to left, exactly the opposite applies. It is important to check whether the diagram eventually gets
back to a 0 value. If it doesn’t, you’ve probably done something wrong, and might want to calculate the
shear force at certain positions, to see whether they match the diagram.

Distributed loads are slightly more difficult, but nothing to worry about either. We’re once more traveling
along the structure from left to right. If the distributed load points upward, the shear force diagram should
go up in a line with a slope equal to the size of the load. If the distributed load points downward, the
shear force diagram should go down. However, when you’re traveling from right to left, this is exactly
the other way around. In table 7.1 is an overview of the sign convention.

7.3 Bending moment diagram

All that’s left, is the bending moment diagram. But the bending moment diagram is the derivative of the
shear force diagram. So you should use the shear force diagram to draw the bending moment diagram.
Start at a point of which you know the value of the bending moment diagram (usually on the left edge
where it’s 0). Then travel from left to right, and make sure the slope of the bending moment diagram is
equal to the value of the shear force diagram at every point. If you run into an external torque in the
structure, a vertical line will appear in the bending moment diagram. A clockwise torque is positive, and
a counter-clockwise torque is negative. If you travel through the structure from left to right, positive
means the diagram jumps up, and negative means it jumps down. If you travel through the structure
from right to left, this is exactly opposite. In table 7.3 is an overview of the sign convention.

Bending moment diagram
Traveling Clockwise moment Counter-clockwise moment

Left to right Diagram goes up Diagram goes down
Right to left Diagram goes down Diagram goes up

Table 7.2: Bending moment diagram overview.

7.4 Non-lineair structures

The past paragraphs all have assumed that the structure consisted of just one (horizontal) bar. This is
of course not always the case. There may be structures with an angle in it (for example this shape: ∧).
Other structures sometimes even split up (for example: >). If the angle in which a structure bends is
90 degrees, a simple rule applies. The normal force diagram turns into the shear force diagram, and the
shear force diagram turns into the normal force diagram. The bending moment diagram stays the same.

However, such a bend is not always the case. In more complicated situations, it is easier to cut the
structure up in parts, making the cut at the point where the structure bends or splits up. Draw all the
parts separately. On every part, at every position you made a cut, you should draw the normal force,
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shear force and bending moment (if present) the other parts are acting on that part. Now the diagrams
can be drawn in the normal way for every part, keeping in mind the internal forces and moments you’ve
just drawn. If you’ve done everything in the right way, every part should be in equilibrium. This is often
worth checking.

8 Virtual Work

Virtual work, if mastered well, can make it very easy to solve certain problems. While normal solving
methods can involve numerous calculations, virtual work sometimes enables you to solve a problem with
just one equation, and that’s the benefit. The downside is that it’s easy to make errors.

8.1 Increasing the degree of freedom

Most structures that occur in problems are statically determinant. They therefore can not move. To use
virtual work, you must increase the degree of freedom in such a way, that the structure can move. But
how to do that is sometimes complicated.

Every part in the structure can pass on forces. But which forces depends on the type of structure. In
table 8.1 is an overview of all the structure types, and which forces they can transfer. As you can see,
there are a lot of different connection types, some of which are familiar, some of which are not, but for
which you just have to use your imagination to find out what they look like. The important part is that
they can move in certain directions, and can not move in other directions.

Structure type Normal forces Shear forces Bending moments
Normal bar X X X
Horizontal sliding bar X X
Vertical sliding bar X X
Hinge X X
Hinge on wheel support X
(tangential to the bar)
Hinge on wheel support X
(perpendicular to the bar)
Sliding connection (unable to rotate) X
No connection

Table 8.1: Overview of structure types, and their degree of freedom.

To use virtual work, you need to replace a certain connection by a connection that has just one more
degree of freedom (one less X). The additional degree of freedom given should be replaced by an external
force or torque. Suppose you want to know the normal force caused by a normal hinge on wheel support,
you have to replace it by just a force (no connection), acting in the same direction as the reaction force
caused by the support was acting. Suppose you want to know the bending moment in a bar, you have to
replace part of the bar by a hinge and two moments (one on each side of the hinge, oppositely directed).

8.2 Making the structure move

After the degree of freedom has been created, the structure should move. Just imagine that the structure
moves (rotates/slides) at the point at which you’ve replaced a connection, and draw it in the picture.
Give the distance/angle that this point has moved a name (for example δu for distances or δθ for angles).

13



Now draw the rest of the ”new” structure, with the corresponding movements. But do keep in mind
that bars remain straight, fixed hinges can not move, and hinges on wheel supports can only move in 1
direction.

Now look at every significant point in the structure that has moved/rotated in any way. If it has moved,
express the movement in δu (if δu hasn’t been defined yet, just define it as a certain movement). If it
has rotated, express the rotation in δθ (define it if necessary). Now you should have a drawing on which
is clearly visible what point moved what distance in what direction.

8.3 Setting up the equation

The most important thing now, is to set up the virtual work equation. As you should know, work is
force times distance traveled (δA = F δu). Also, work is torque times angle rotated (δA = M δθ) (δθ in
radians!). It is very important to remember the following rule: If a force points in the same direction as
the movement (thus the force partially causes the movement), the work done is positive. If a force points
in the opposite direction as the movement (thus the force partially counteracts the movement), the work
done is negative. And if the force is perpendicular to the movement, then the work done is 0. In formula,
this can be written as δA = F δu cos α, where α is the angle between the force and the movement.

8.4 Working out the equation

When the work done by all the forces and the torques has been written down (with the right sign),
it should be equal to 0, since the structure is in equilibrium. Now the equation should be solved.
However, next to the unknown force/torque, there are often 2 unknown variables: δu and δθ. To solve
the equation, you first have to express one of those variables in the other one. When doing this, the small
angle approximation should be used: tan θ = θ. This makes solving the equation a lot simpler.

When one of the two unknown variables has been filled in, the equation should be solved. While solving
it, the other unknown variable will also disappear (if you’ve done everything right), so that the only
unknown left is the unknown force/torque, expressed in other known forces and torques. Of course you
need to evaluate your answer (check whether it has the right unit, etc.), but if you have followed the
steps, the answer should be right.

9 Cables and pressure vessels

Next to rigid bars, structures can also consist of cables and pressure valves. This is often a difficult
subject, since cables are rarely straight. Of course the normal equilibrium equations still apply, but these
are often not enough to solve the problem. But there are a few tricks that can be used to solve problems
involving these subjects.

9.1 Cables without distributed loads

Cables bend, and bars don’t. That’s why cables are sometimes a bit more difficult to calculate with.
However, cables are often a bit like structures containing normal bars. Suppose there is a cable, on which
one or more normal forces (no distributed loads) apply. If you replace the cable by bars, and place hinges
at the points where the forces apply, the structures are more or less equivalent, and the normal solving
methods for trusses can be applied. However, when distributed loads are present, it is not possible to
put an infinite amount of hinges in the bar, so this trick won’t work.
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9.2 Cables without horizontal forces

In almost all problems involving cables, all the forces that are acting on the cable are downwards (except
at the two ends of the cable). Thus the horizontal component of the cable tension does not change in
the entire cable, and is therefore constant. So if you at every point know in which direction the cable
points towards, and if you know the horizontal component of the cable tension, you can easily calculate
the cable tension at any given point in the cable.

9.3 The rigid bar trick for cables

If all the forces acting on the cable are directed downward (or sometimes upward, just as long as there’s
no horizontal component), there is another trick you can use. Suppose there is a cable that spans from
point A to point B, which is subjected to a number of vertical forces. Assume that there is a rigid and
straight bar AB between points A and B (which don’t have to be at the same height), and that the
vertical forces acting on the rope act on the bar. Draw the bending moment diagram of the bar, and
turn it upside down (positive downward). Now divide the entire diagram by the horizontal component
of the cable tension Hcable. The diagram that appears shows the distance between the bar and the cable
at any given point. In formula, this is:

ybar − ycable = − Mbar

Hcable
(9.1)

The variable y indicates the height, and Mcable the bending moment in the cable. But the bending
moment is the integral of the shear force diagram, and the shear force diagram is the integral of the
”force diagram”. So also the following function applies:

(ybar − ycable)′′ = − qx

Hcable
(9.2)

Where qx is the force (often the magnitude of the distributed load) acting on the cable at any point x.
Note that the second derivative of the height is taken. If you choose a nice and simple root for your
coordinate system, it is often easy to find a function for the height of the cable at any given point.

9.4 Pressure vessels

Pressure vessels are just like cables. However, instead of a distributed load directed downward, there is a
distributed load directed perpendicular to the vessel hull. This might seem difficult to calculate with (if
you want, you can use integrals to find resultant forces and such, but I wouldn’t recommend this), but
there is a trick which makes it simple. It is called Pascal’s law.

Suppose you have a pressure vessel with the shape of a circle (radius r). Now cut it in half by a vertical
line right through the middle. The pressure being exerted on the cut is of course 2r · p, where p is the
pressure inside the vessel. The pressure exerted on the other side is πr ·p. However, this pressure consists
of forces directed in multiple directions. Pascal’s law states that the resultant force of the latter pressure
is of equal size and opposite direction with respect to the resultant force of the pressure exerted on the
cut. Also the lines of action of these two resultant forces are equal.

So by using this law, it can be proven that the tension in the pressure vessel is r · p. The 2 disappeared,
because we cut twice through the pressure vessel (once on top of the circle, once on the bottom). However,
this law holds not only for circular shapes but for any shape. And if you know this law, you just have to
cut the pressure vessel in the right way to find what you need to know.
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