
AE31002 Structural Dynamics
Natural Frequency of SDOF System

Anup Ghosh

Anup Ghosh Natural Frequency of SDOF System



Simple Harmonic Motion
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In the Static equilibrium
case, k∆ = w = mg
At any intermediate
position with a
displacement of x,
following D‘Alemberts’s
principle
mẍ =

∑
F = w−k(∆+x)

mẍ + kx = 0
A 2nd order differential
equation.
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mẍ + kx = 0
A 2nd order differential
equation.

Anup Ghosh Natural Frequency of SDOF System



In the Static equilibrium
case, k∆ = w = mg
At any intermediate
position with a
displacement of x,
following D‘Alemberts’s
principle
mẍ =
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Let us assume a trial solution, x = A cos ωt or
x = B sin ωt

Substituting the first one (−mω2 + k)A cos ωt = 0

⇒ ω2 = k
m ⇒ ωn =

√
k
m

where, ωn is known as the Natural Frequency of the
system.
Since both can be a possible solution of the linear differential
equation, a superposition of both is also a solution, i.e.,
x = A cos ωnt + B sin ωnt
Velocity at any instant of time
ẋ = −A ωn sin ωnt + B ωn cos ωnt
To find out the values of the constants we need to solve a
initial value problem,
For t = 0, x = x0, and ẋ = v0

x0 = A and v0 = Bωn

⇒ x = x0 cos ωnt + v0
ωn
sin ωnt

Also may be written as x = C sin(ωnt + α)
where, tan α = x0

v0/ωn
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ẋ = −A ωn sin ωnt + B ωn cos ωnt
To find out the values of the constants we need to solve a
initial value problem,
For t = 0, x = x0, and ẋ = v0
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ẋ = −A ωn sin ωnt + B ωn cos ωnt
To find out the values of the constants we need to solve a
initial value problem,
For t = 0, x = x0, and ẋ = v0
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SDOF without damping
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SDOF – Complex number solution

Let,
x = Aeλt

λ2 + ω2
n = 0 ⇒ λ = ±iωn

x = A1e
iωnt + A2e

−iωnt

where A1 and A2 are constants.
Consider the series,
e iωt = cos ωt + i sin ωt
e−iωt = cos ωt − i sin ωt
Substituting the above values,
x = (A1 + A2) cos ωnt + i(A1 − A2) sin ωnt
if we consider, (A1 + A2) = cos φ, i(A1 − A2) = sin φ
x = A cos(ωnt − φ)
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SDOF – Complex number solution

To find out the values of the constants we need to solve a initial
value problem,
For t = 0, x = x0, and ẋ = v0

x0 = A cos φ and v0 = Aωn sin φ

A =
√

x2
0 + ( v0

ωn
)2 and tan φ = v0/ωn

x0

⇒ x = x0 cos ωnt + v0
ωn
sin ωnt
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SDOF – Examples

Determine the natural frequency of the system shown in the figure.
The system consists of a weight of 50.7kg to a horizontal
cantilever beam through a coil spring k2. The cantilever beam has
a thickness t = 1

4 cm, a width b = 1cm and modulus of elasticity
E = 30x106 kg/cm2, and a length L = 12.5 cm. The coil spring
has a stiffness, k2 = 10.69 kg/cm.
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SDOF – Examples

For a cantilever beam the tip deflection ∆ due to the application
of a transverse concentrated load P

is ∆ = PL3

3EI .

Corresponding spring constant or stiffnrss is k1 = P
∆ = 3EI

L3 ,

where I = bt3

12
The system shows that it acts as two springs are in series.
Equivalent stiffness of the system

keq = { 1

k1
+

1

k2
}−1

keq = { 1

60
+

1

10.69
}−1 = 9.07kg/cm2

Natural frequency of the system is
ω =

√
ke/m =

√
9.07 x 0.981/50.7
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Determine the natural frequency of a weight w suspended from a
spring at the mid point of a simply supported beam shown below.
The length of the beam is L, and its flexural rigidity is EI. The
spring stiffness is k. Assume the beam to be mass-less.
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The Static equilibrium position may be considered as the origin.
So the equation of motion becomes m
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∆ = PL3/48EI

∆ = PL3/12EI

∆ = PL3/192EI
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