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Damped Single Degree of Freedom System

Damping is a combination of forces to
dissipate energy; more precisely, the
unavoidable presence of the friction
forces constitutes a mechanism through
which the mechanical energy of the
system, kinetic or potential energy, is
transferred to the other forms of energy
such as heat.
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Damped Single Degree of Freedom System

Damping is a combination of forces to

dissipate energy; more precisely, the Viscous Damping — the
unavoidable presence of the friction type of damping force that
forces constitutes a mechanism through could be developed in a
which the mechanical energy of the body restrained in its
system, kinetic or potential energy, is motion by a surrounding

transferred to the other forms of energy viscous fluid.
such as heat.
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Damped Single Degree of Freedom System

Static
Equilibrium

The summation of forces following
D'Alembert's principle
mx +cx+ kx =0
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Damped Single Degree of Freedom System

mX+cx+kx =0
The trial solutions x = A sin wt or x = B cos wt does not satisfy
the above equation where as x = Ae*! satisfies.

= m\M+cA+k=0
= N+ A+ k=0
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There may be three possible cases where the portion under the
radical may be positive or negative or zero for the cases

over-damped or under-damped or critically-damped cases,
respectively.
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Case | (ﬁ)2 > (%) — Over Damped Case
The solution becomes x = Aje ™Mt + Aye 2t where A1 and )\,
are two real roots of the equation. The system displacement will
decay without any oscillation. This equation shows that there is a
usual creeping back of the mass to the equilibrium position. This is

a case of over-damped situation and no oscillation is possible.

ANIMATION OVER DAMPED

Case Il (i)2 < (£) - Under Damped Case

Roots of the equation are imaginary.

Oscillation continues for a considerable time period depending
upon the damping present in the system.

=G ()G
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Now using exponential series,
e’ = cosf + i sinf

e % = cosh — i sinf

Substituting the expressions similar to the above we get,

considering, wg = [(rl;) . ( c )2}5

m 2m

— ~Zat ! plagt ro —iagt
x = e’ [Aie” + Ae “]

e [AI' (cosa,t + isinm,t) + A (cosw,t — sin &Jdt)]

e (A + A))cosw,t + i(A — Al)sina,t]
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Let,
A +A = Asing

i(A +A) = Acosg¢

x = el~21) [A sin(wgt + ¢)]
where,
A* = (A +A) - (A - A)
AR AN - AR AT 24 A
- 4A A
A = 2AA)

Anup Ghosh Damped SDOF System
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So, roots of the equation are,

A= —% +iwg

A2 = ~o5m Wy X
2]2

C

ﬂ)

With a frequency, w1 = wg = [(A) _ (

m
The frequency is not same as of the case of undamped case. It is
some amount less than the previous value, i.e., \/% The change
is dependent on the damping parameter ¢ and the mass of the
system.
Therefore the equation of damped single degree of freedom system
is

x = e(~3mt) [A sin(wgt + ¢)]

ANIMATION UNDER DAMPED
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Case Il (%)% = (%) - Critically Damped Case

If c. is the coefficient for critical damping.

2—4km:ccz2\/

\/ jcc—2mw,,:cc—w—"

_ ¢ __ Actual Damping Coefficient
Dampmg ratio 5 ~ ¢~ Critical Damping Coefficient

5 = §CC substituting the above relation
c
= —fw
o = SWn

The equation for free damped single degree freedom system
modifies to
x = 78 [A sin(wyt + ¢)]

where wy = wpy/1 — £2
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T1_2l_ 2

T wg Wn /1_52'

A12 = —8wp = \/ (§Wn)2 —wi= <_§ + \/527_1> Wn

This is the case of £ <1 , i.e., All damped free vibrations.
when £ =1 It is a case of critically damped one.
&>1 ltis a case of over-damped one.

In case of under-damped or damped case the constants may be

found out solving a initial value problem.
Let, at t = 0, x = xg, and x = vy and if we substitute it to
x = e(=&nt) [A sin(wgt + ¢)]
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We get

— Vo + xown .
x = el~€wnt) [xo cos wyt + Vo + Xo8wn sin wyt
wWd

= x(t) = Cel=8nt) cos(wyt — a)

where C = \/X + <7V°+X3£w">2

and tan q = YotXe&wn

ANIMATION 27"
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In case of Over-Damped System, we get from the general solution
.o Ae(—£+\/§2—1)wnt+ Be(—ﬁ—\/§2—1>wnt

X'0+<£+\/§2771>w,,xo *X'0*<§7\/§2771>wnx0
a

2wnr/E2—1 nd B = 2wny/E2—1

where A =

ANIMATION OVER DAMPED
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In case of Critically-Damped System, we get from the general

solution
x = (A+ Bt)e“!

With implementation of initial conditions

x(t) = [xo + {%0 + wnxo }t] €“"*

ANIMATION of CRITICALLY DAMPED SYSTEM
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