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Coulomb Damping

Assumptions

– It is resulting from the sliding of two dry surfaces.

– The damping force is equal to the product of the normal
forces and the coefficient of friction µ

– It is assumed to be independent of the velocity, once the
motion is initiated.

– The sign of the damping force is opposite to that of velocity,
the differential equation of motion for each sign is valid only
for half cycle intervals.

– The motion will cease, however, when the amplitude is less
than ∆, at which position the spring force is insufficient to
over come static friction force, which is generally greater than
the kinetic friction force.
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Coulomb Damping

By work-energy principle

Observation

– The motion will cease, when the amplitude is less than ∆.

– At this stage position the spring force is not sufficient to over
come static friction force, which is generally greater than the
kinetic friction force.

Anup Ghosh Coulomb Damping



Coulomb Damping

By work-energy principle

Observation

– The motion will cease, when the amplitude is less than ∆.

– At this stage position the spring force is not sufficient to over
come static friction force, which is generally greater than the
kinetic friction force.

Anup Ghosh Coulomb Damping



Coulomb Damping

By work-energy principle

Choose a half cycle with amplitude X1 to X−1 and equate the
energy of the system when the kinetic energy is zero because the
velocity at both the places are zero and the change in potential
energy of the spring must equal the energy released by the
damping mechanism.

1

2
k(X 2

1 − X 2
−1)− Fd(X1 + X−1) = 0

Change in amplitude is = X1 − X−1 = 2Fd
k

Decay of amplitude per cycle= = X1 − X2 = 4Fd
k

Anup Ghosh Coulomb Damping



Coulomb Damping

Trigonometric approach

Fd = µw = µN
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Coulomb Damping

Trigonometric approach

The equation of motion

,
Where ‘sgn(ẋ)’ denotes sign of ẋ and represents a function having
the value +1 if its argument ẋ is positive and the value -1 if its
arguments is negative.

Mathematically
So, we can write
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Coulomb Damping

Trigonometric approach

Considering the 2nd equation first and bringing back the reference
of homogeneous solution of the SDOF undamped system
⇒ x = x0 cos ωnt + v0

ωn
sin ωnt, where ωn =

√
k/m

The equation becomes

mẍ + kx = Fd = fdk (Assumed)

ẍ + ω2
nx = ω2

nfd , where, fd = Fd/k is equivalent to displacement.
Now,
x − fd = Acosωnt + Bsinωnt is a general solution of the above
equation. Solving the above equation with initial conditions as
x(0) = x0 and ẋ(0) = 0 and the solution is

x(t) = (x0 − fd) cos ωnt + fd

This equation is valid for 0 ≤ t ≤ t1, where t1 is the time at which
the velocity again reduces to zero. Now the velocity is

ẋ(t) = −ωn(x0 − fd) sin ωnt

The lowest nontrivial solution satisfies the condition ẋ(t1) = 0Anup Ghosh Coulomb Damping



Coulomb Damping

Trigonometric approach

The lowest nontrivial solution satisfies the condition ẋ(t1) = 0 is
t1 = π/ωn and the associated displacement is x(t1) = −(x0 − 2fd)
If the above amplitude is sufficient enough to overcome the static
friction, the mass acquires a positive velocity and , so that the
motion must satisfy the other equation of motion in Coulomb
damping, i.e.,

ẍ + ω2x = −ω2fd

With the initial conditions x(t1) = −(x0 − 2fd) and ẋ(t1) = 0

x(t) = (x0 − 3fd) cos ωnt − fd

The equation is valid for the time period , t1 ≤ t ≤ t2, where
t2 = 2π/ωn

At the end of complete cycle, decay of amplitude is 4fd , since,
x(t2) = x0 − 4fd
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Coulomb Damping

The amplitude drop in each half cycle is 2fd or 2µN
k ,

The number of half cycle elapsed before the motion ceases is
x0 − r 2µNk ≤

µN
k

r ≥

{
x0 − µN

k
2µN
k

}
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Coulomb Damping

Observations

– The natural frequency of the system is unaltered with the
introduction of Coulomb damping, while it is reduced with the
introduction of viscous damping.

– The motion is periodic in case of Coulomb damping, while it
can be non-periodic in a viscously damped system
(over-damped case)

– The system comes to rest after some time with Coulomb
damping, whereas the motion theoretically continues for ever
(perhaps with an infinitely small amplitude) with viscous
damping.

– The amplitude reduces linearly with Coulomb damping,
whereas it reduces exponentially in case of viscous damping.
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Coulomb Damping

For torsional damping

Let us assume the magnitude of the frictional torque is T .
Equation of motion for the first half cycle is

I0θ̈ + kθθ = −T

and for the other half is

I0θ̈ + kθθ = T

The frequency of the system remains the same, i.e.,

ωn =

√
kθ
I0

Amplitude of motion at the end of r-th half cycle (θr ), is given by

θr = θ0 − r
2T

kθ
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Coulomb Damping

For torsional damping

The motion ceases when

r ≥

{
θ0 − T

kθ
2T
kθ

}
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Coulomb Damping

A metal block placed on a rough surface , is attached to a spring
and is given an initial displacement of 10cm from its equilibrium
position. After five cycles of oscillation in 2sec, the final position of
the metal block is found to be 1cm, from its equilibrium position.
Find the coefficient of friction berween the surface and the metal
block. (Assume Coulomb damping)

Since five cycle of oscillation were observed to take place in 2sec.
the period of oscillation is 2/5 = 0.4sec, and the frequency of

oscillation ωn =
√

k
m = 2π

T = 2π
0.4 = 15.708rad/sec.

Reduction of amplitude of oscillation in 5 cycles is

5

(
4µmg

k

)
= 0.10− 0.01 = 0.09m

µ =
0.09k

20mg
=

0.09ω2
n

20g
= 0.1132
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Coulomb Damping

Calculate the frequency of
the damped oscillation of
the system shown for the
values k = 4000 lb/in
(7.0051 x 105 N/m), c =
20 lb s/in (3502.54 N
s/m), m 10 lb s2/in
(1751.27 kg), a = 50 in
(1.27m), and L = 100 in
(2.54 m). Determine the
value of critical damping.
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Coulomb Damping

mLθ̈ + cLθ̇ + F2 = 0,

mLθ̈ + cLθ̇ + k
a2

L
θ = 0,

θ̈ +
c

m
θ̇ +

k

m

a2

L2
θ = 0,

F1a = F2L⇒

F2 = F1
a

L
= k

a2

L
θ

θ̈ + 2ξωnθ̇ + ω2
nθ = 0, where

c

m
= 2ξωn and ω2

n =
k

m

a2

L2

Now,

ωd = ωn

√
(1− ξ2) =

√(
k

m

a2

L2
− c2

4m2

)
= 9.95rad/s

to find cc , find ωn, then ξ from c/2m = ξωn and get cc
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