AE31002 Aerospace Structural Dynamics Forced Response for undamped SDOF system

Anup Ghosh

February, 2014

Anup Ghosh Forced Response for undamped SDOF system

向下 イヨト イヨト

Transient Response

Let us try to find out the transient response of a SDOF system due to the loads shown below.

- E - - E -

The complementary part of the solution is $x_c = A \sin \omega t + B \cos \omega t$ and the particular integral may be $(D^2 + \omega^2)x = \frac{F_0}{m}$

$$x = \frac{F_0}{m} \cdot \frac{1}{(D^2 + \omega^2)} = \frac{F_0}{\omega^2 m} \left(1 + \frac{D}{\omega^2}\right)$$
$$= \frac{F_0}{\omega^2 m} \left(1 - \frac{D^2}{\omega^2} + \dots\right)$$
$$= \frac{F_0}{\omega^2 m} = \frac{F_0}{k}$$

・日・ ・ ヨ・ ・ ヨ・

3

$$\therefore \text{ Complete solution }; \qquad x = A\sin\omega t + B\cos\omega t + \frac{F_0}{k}$$
$$\dot{x} = A\omega\cos\omega t - B\omega\sin\omega t$$
B.C. at $t = 0$ $x = 0$ $\dot{x} = 0$
$$0 = A.0 + B.1 + \frac{F_0}{k} \implies B = -\frac{F_0}{k}$$
$$0 = A\omega.1 - B.0 \implies A = 0$$
$$\therefore \quad x = -\frac{F_0}{k}\cos\omega t + \frac{F_0}{k} = \frac{F_0}{k}(1 - \cos\omega t) = x_{st}(1 - \cos\omega t)$$
$$\frac{x}{x_{st}} = \text{dynamic amplification} = (1 - \cos\omega t)$$
$$x_{max} = \frac{2F_0}{k} \text{ at } \omega t = \pi$$

◆□→ ◆□→ ◆注→ ◆注→ □注

t)

Response of SDOF System

・ロン ・回 と ・ ヨン ・ ヨン

æ

$$t \le t_d \quad F(t) = F_0 \frac{t}{t_d}$$
$$t \ge t_d \quad F(t) = F_0$$

・ロ・ ・回・ ・ヨ・ ・ヨ・

Э.

Eq. of motion

$$m\ddot{x} + kx = F_0 \frac{t}{t_d}$$
$$\Rightarrow \ddot{x} + \omega_n^2 x = \frac{F_0}{m} \cdot \frac{t}{t_d}$$

C. F. $x = A\sin \omega t + B\cos \omega t$ P. I. $x = \frac{F_0}{m} \cdot \frac{1}{D^2 + \omega_n^2} \cdot \frac{t}{t_d}$ $= \frac{F_0}{m\omega_n^2} \left(1 + \frac{D^2}{\omega_n^2}\right)^{-1} \frac{t}{t_d}$ $= \frac{F_0}{k} \cdot \frac{t}{t_d}$

イロン イヨン イヨン イヨン

3

Complete Solution :

$$x = A\sin\omega t + B\cos\omega t + \frac{F_0}{k} \cdot \frac{t}{t_d}$$

B.C. $t = 0$ $x = 0$ $\dot{x}(0) = 0$ $B = 0$
 $\dot{x} = A\omega\cos\omega t - B\sin\omega t + \frac{F_0}{k} \cdot \frac{1}{t_d}$
 $\dot{x}(0) = 0 = A\omega \cdot 1 - B\omega \cdot 0 + \frac{F_0}{k} \cdot \frac{1}{t_d}$
 $\Rightarrow A = -\frac{F_0}{k\omega} \cdot \frac{1}{t_d}$
 $\therefore x(t) = -\frac{F_0}{k\omega t_d} \cdot \frac{1}{t_d} \sin\omega t + \frac{F_0}{k} \cdot \frac{t}{t_d}$
 $= \frac{F_0}{k\omega t_d} [\omega t - \sin\omega t] = \frac{x_{st}}{\omega t_d} [\omega t - \sin\omega t]$

(ロ) (四) (E) (E) (E)

$$\frac{x}{x_{st}} = \text{Dynamic Magnification Factor } \frac{1}{\omega t_d} \left[\omega t - \sin \omega t \right]$$

$$\dot{x} = \frac{F_0}{k \omega t_d} \left[\omega - \omega \cos \omega t \right] = \frac{F_0}{k t_d} \left(1 - \cos \omega t \right)$$
at $t = t_d$

$$x(t) = \frac{F_0}{k \omega t_d} \left[\omega t_d - \sin \omega t_d \right]$$

$$\dot{x}(t) = \frac{F_0}{k t_d} \left[1 - \cos \omega t_d \right]$$
when $t > t_d$ $m\ddot{x} + kx = F_0 \rightarrow \text{earlier case}$

$$x = A \sin \omega t + B \cos \omega t + \frac{F_0}{k}$$

$$\dot{x} = A \omega \cos \omega t - B \omega \sin \omega t$$

at $t = t_d$ initial conditions

Substititing initial conditions and solve for A & B to get the complete solution. Initial conditions are

$$x(t_d) = A\sin\omega t_d + B\cos\omega t_d + \frac{F_0}{k} = \frac{F_0}{k\omega t_d} (\omega t_d - \sin\omega t_d) \dots \dots (1)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

and the velocity becomes

$$\dot{x}(t_d) = A\omega\cos\omega t_d - B\omega\sin\omega t_d = \frac{F_0}{kt_d}(1 - \cos\omega t_d) \dots (2)$$

$$(2) \rightarrow A\cos\omega t_d - B\sin\omega t_d = \frac{F_0}{k\omega t_d}(1 - \cos\omega t_d)$$

$$(1) \times \sin\omega t_d \Rightarrow A\sin^2\omega t_d + B\sin\omega t_d\cos\omega t_d = \frac{F_0\sin\omega t_d}{k\omega t_d}(\omega t_d - \sin\omega t_d)$$

$$- \frac{F_0\sin\omega t_d}{k}$$

$$(2) \times \cos\omega t_d \Rightarrow A\cos^2\omega t_d - B\sin\omega t_d\cos\omega t_d = \frac{F_0\cos\omega t_d}{k\omega t_d}(1 - \cos\omega t_d)$$

Adding above two equation we get

$$A(\sin^{2}\omega t_{d} + \cos^{2}\omega t_{d}) = \frac{F_{0}}{k\omega t_{d}} (\omega t_{d}\sin\omega t_{d} - \sin^{2}\omega t_{d} + \cos\omega t_{d} - \cos^{2}\omega t_{d}) - \frac{F_{0}}{k}\sin\omega t_{d}$$

$$\Rightarrow A = \frac{F_{0}}{k\omega t_{d}} (\cos\omega t_{d} + \omega t_{d}\sin\omega t_{d} - 1) - \frac{F_{0}}{k}\sin\omega t_{d}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Similarly, multiplying equation (1) by $\cos \omega t_d \& (2)$ by $\sin \omega t_d$ we get,

1)
$$\times \cos \omega t_d \Rightarrow A \sin \omega t_d \cos \omega t_d + B \cos^2 \omega t_d = \frac{F_0 \cos \omega t_d}{k \omega t_d} (\omega t_d - \sin \omega t_d) - \frac{F_0 \cos \omega t_d}{k}$$

(2) $\times \sin \omega t_d \Rightarrow A \cos \omega t_d \sin \omega t_d - B \sin^2 \omega t_d = \frac{F_0 \sin \omega t_d}{k t_d} (1 - \cos \omega t_d)$

substracting (2) from (1) we get,

$$B\left(\sin^{2}\omega t_{d} + \cos^{2}\omega t_{d}\right)$$

$$= \frac{F_{0}}{k\omega t_{d}}\left(\omega t_{d}\cos\omega t_{d} - \sin\omega t_{d}\cos\omega t_{d} - \sin\omega t_{d}\cos\omega t_{d} + \sin\omega t_{d}\cos\omega t_{d}\right) - \frac{F_{0}}{k}\cos\omega t_{d}$$

$$= \frac{F_{0}}{k\omega t_{d}}\left(\omega t_{d}\cos\omega t_{d} - \sin\omega t_{d}\cos\omega t_{d} - \sin\omega t_{d}\cos\omega t_{d}\right) - \frac{F_{0}}{k}\cos\omega t_{d}$$

$$\Rightarrow B = \frac{F_0}{k\omega t_d} \left(\omega t_d \cos \omega t_d - \sin \omega t_d \right) - \frac{F_0}{k} \cos \omega t_d$$

 \therefore Response at any time $t > t_d$ we get,

$$\begin{aligned} \mathbf{x}(t) &= \left\{ \frac{F_0}{k \,\omega t_d} \left(\cos \omega t_d + \omega t_d \sin \omega t_d - 1 \right) - \frac{F_0}{k} \sin \omega t_d \right\} \sin \omega t \\ &+ \left\{ \frac{F_0}{k \,\omega t_d} \left(\omega t_d \cos \omega t_d - \sin \omega t_d \right) - \frac{F_0}{k} \cos \omega t \right\} \cos \omega t + \frac{F_0}{k} \end{aligned}$$

(ロ) (同) (E) (E) (E)