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Importance

– Two degree of freedom system is merely a special case of
multi degree of freedom system.

– It is an introduction to a more advanced study of discrete
systems with an arbitrary large number of degrees of freedom.

– The MDOF system shows as many natural frequencies and
associated natural mode shapes as the number of degrees of
freedom.

– Natural modes posses a very important property known as
orthogonality.

– A proper choice of coordinates, known as the principle or
natural coordinates, the system differential equations become
independent of each other.

– The motion of the system can be regarded as a superposition
of the natural coordinates.
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F1(t)−c1ẋ1(t)−k1x1(t)+c2[ẋ2(t)−ẋ1(t)]+k2[x2(t)−x1(t)] = m1ẍ1(t)

F1(t)−c2[ẋ2(t)−ẋ1(t)]−k2[x2(t)−x1(t)]−c3ẋ2(t)−k3x2(t) = m2ẍ2(t)

after simplification

m1ẍ1(t) + (c1 + c2)ẋ1(t)− c2ẋ2(t) + (k1 + k2)x1(t)− k2x2(t) = F1(t)

m2ẍ2(t)− c2ẋ1(t) + (c2 + c3)ẋ2(t)− k2x1(t) + (k2 + k3)x2(t) = F2(t)

These are coupled equation of motion for 2 degree of freedom system.
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In matrix form [m]{ẍ}+ [c]{ẋ}+ [k]{x} = {F (t)}, where[
m1 0
0 m2

]
= [m] = mass matrix

[
c1 + c2 −c2
−c2 c2 + c3

]
= [c] = damping matrix[

k1 + k2 −k2
−k2 k2 + k3

]
= [k] = stiffness matrix{

x1(t)
x2(t)

}
= {x(t)} = displacement vector{

F1(t)
F2(t)

}
= {F (t)} = force vector

Anup Ghosh Two Degrees of Freedom System



Two Degree of Freedom System
Damped 2DOFS
Undamped 2DOFS

Observations

– The coupling terms in first equation are c2ẋ2(t) & k2ẋ2(t) and
in 2nd equation are c2ẋ1(t) & k2ẋ1(t)

– The matrices [m], [c] and [k] are symmetric in nature with
respect to the diagonal of the respective matrices.

– The equations are not independent equations. We need
special consideration (decoupling) to solve these.
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Equations modify to

[
m1 0
0 m2

]{
ẍ1(t)
ẍ2(t)

}
+

[
k1 + k2 −k2
−k2 k2 + k3

]{
x1(t)
x2(t)

}
=

{
0
0

}
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Let us consider the special type of solution when the coordinates
x1(t) and x2(t) increase or decrease in the same proportion as time
unfolds – a synchronous motion. So, the ratio x1(t)/x2(t) is
independent of time and the ratio between the two displacements
remains constant throughout the motion. Let,

x1(t) = u1f (t) and x2(t) = u2f (t)[
m1 0
0 m2

]{
u1f̈ (t)

u2f̈ (t)

}
+

[
k11 k12
k21 k22

]{
u1f (t)
u2f (t)

}
=

{
0
0

}
To posses a solution, we must have,

− f̈ (t)

f (t)
=

k11u1 + k12u2

m1u1
=

k12u1 + k22u2

m2u2
= λ = a real constant
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Hence synchronous motion is possible only when,

(k11 − λm1)u1 + k12u2 = 0

k12u1 + (k22 − λm2)u2 = 0

⇒ λ

[
m1 0
0 m2

]{
u1

u2

}
=

[
k11 k12
k21 k22

]{
u1

u2

}
⇒ λ[m]{u} = [k]{u}

The nontrivial solution of this problem is a eigenvalue problem
and by setting the determinant equal to zero we get.

λ1
λ2

=
1

2

m1k22 + m2k11
m1m2

∓ 1

2

√(
m1k22 + m2k11

m1m2

)2

− 4
k11k22 − k2

12

m1m2

(1)

This may be proved that λ1 = ω2
1 and λ2 = ω2

2 represents the
frequencies of the structure when a possible solution of the
assumed displacement function f (t) is f (t) = C cos (ωt − φ).
Now, u1 =? and u2 =?
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Now, let,

{u}1 =

{
u11

u21

}
and {u}2 =

{
u12

u22

}
the first suffix denote the position of displacement and the
second suffix denote the corresponding frequency. The
quantities {u}1 and {u}2 are known as the modal vectors
representing the shape of deflection of the system associated to
a natural frequency.

Since ωi are found out from the non trivial solution of a set of
homogeneous equations, only the ratio u21/u11 and u22/u12 can be
determined uniquely, i.e.,

u21

u11
= −k11 − ω2

1m1

k12
= − k12

k22 − ω2
1m2

u22

u12
= −k11 − ω2

2m1

k12
= − k12

k22 − ω2
2m2
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Orthogonality of Modes and Natural Coordinates

{u}1 =

{
u11

u21

}
and {u}2 =

{
u12

u22

}

{u}1 = u11

{
1

−k11−ω2
1m1

k12

}
and {u}2 = u12

{
1

−k11−ω2
2m1

k12

}

{u}T2 [m]{u}1 = u11u12

{
1

− k11−ω2
2m1

k12

}T [
m1 0
0 m2

]{
1

− k11−ω2
1m1

k12

}
(Assignment)
The LHS quantity, {u}T2 [m]{u}1, becomes zero after substitution
of the values of ωi . So, the modal vectors {u}1 and {u}2 shows
orthogonality with respect to the mass of the system.
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Now considering the matrix equation for free vibration of 2DOFS,
[k]{u} = ω2[m]{u} we have [k]{u}1 = ω2

1[m]{u}1 and
[k]{u}2 = ω2

2[m]{u}2. Premultiplying the first by {u}T2 we have

{u}T2 [k]{u}1 = ω2
1{u}T2 [m]{u}1 = 0

So, the modal vectors {u}1 and {u}2 are also orthogonal with
respect to the stiffness of the system.
This is also worth noting that

{u}Ti [k]{u}i = ω2
i {u}Ti [m]{u}i i = 1, 2
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This property of orthogonality is used to uncouple the
equations both elastically and inertially. Let us rewrite the
equation of motion for free vibration in matrix form,

[m]{ẍ(t)}+ [k]{x(t)} = 0

Let, {x(t)} = {u}1q1(t) + {u}2q2(t), eqn. of motion becomes

[m]({u}1q̈1(t) + {u}2q̈2(t)) + [k]({u}1q1(t) + {u}2q2(t)) = 0

Now premultiplying the above equation by {u}T1 and {u}T2
separately and using the relation of orthogonality for same mode,
we get

q̈1(t) + ω2
1q1(t) = 0

q̈2(t) + ω2
2q2(t) = 0

Two independent equations in terms of q1(t), ω1 or q2(t), ω2

and the coordinates qi (t) are known as natural coordinates or
principle coordinates.
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Since qi represent independent equations and harmonic oscillation,
the solution of the equation are

qi (t) = Ci cos (ωi − φi )

So, the motion of the system at any time can be expressed
as a superposition of the natural modes of vibration
multiplied by the natural coordinates, i.e.,

{x(t)} = C1{u}1 cos(ω1t − φ1) + C2{u}2 cos(ω2t − φ2)

In the matrix form{
x1(t)
x2(t)

}
= C1

{
u1

u2

}
1

cos (ω1−φ1)+C2

{
u1

u2

}
2

cos (ω2−φ2)
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# The schematic diagram of a engine connected to a propeller
through gears is shown in the figure. The mass moments of inertia
of the flywheel, engine, gear-1, gear-2 and the propeller (in kg-m2)
are 9000, 1000, 250, 150 and 2000, respectively. Find the natural
frequencies and mode shapes of the system.

Obsrvations:

– We need to find the equivalent mass moment of inertia of all
rotors.
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Assumptions:
1 The flywheel can be considered as stationary with respect to

the other part of the system because of its huge mass moment
of inertia.

2 The engine and gears can be replaced by a single equivalent
rotor.

The system is having velocity constraint implemented through the
two different gear teeth ratio. The mass moment of inertia of
gear-2 and the propeller w.r.t. engine are:

(JG2)eq = 22 × 150 = 600 kg −m2

(JP)eq = 22 × 2000 = 8000 kg −m2

Considering the flywheel as fixed combined mass moment of inertia
of engine and two gears is:

J1 = JE + JG1 + (JG2)eq
= 1000 + 250 = 600 = 1850 kg −m2
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With G=80 x 109 N/m2

kt1 =
G I01

l1
=

G

l1

(
πd4

1

32

)
=

80× 109 × π × 0.104

0.8× 32
= 981, 750N−m/rad

kt2 =
G I02

l2
=

G

l2

(
πd4

2

32

)
=

80× 109 × π × 0.154

1.0× 32
= 3, 976, 087.5N−m/rad

Following the standard case as derived earlier, i.e.,

ω2
1

ω2
2

=
1

2

m1k22 + m2k11
m1m2

∓1

2

√(
m1k22 + m2k11

m1m2

)2

− 4
k11k22 − k2

12

m1m2

Here x ≡ θ and k1 = kt1, k2 = kt2, k3 = 0, m1 = J1 m2 = J2
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