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In most general case a undamped coupled 2 degree of freedom
system is as follows.[

m11 m12

m21 m22

]{
ẍ1
ẍ2

}
+

[
k11 k12
k21 k22

]{
x1
x2

}
=

{
0
0

}
– Mass or dynamic coupling exists if mass matrix is

nondiagonal.

– Stiffness or static coupling exists if stiffness matrix is
nondiagonal.

– It is possible to decouple the equations with help of principle
or natural or normal coordinates.

– It is not always possible to decouple the equation of motions
for damped systems.

[
m11 0
0 m22

]{
ẍ1
ẍ2

}
+

[
c11 c12
c21 c22

]{
ẋ1
ẋ2

}
+

[
k11 0
0 k22

]{
x1
x2

}
=

{
0
0

}
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Let us consider a 2DOF system where the mass center does not
coincide with the geometric center.

Case of static coupling may be observed if we consider the
co-ordinates as shown above. The equations of motion becomes[

m 0
0 J

]{
ẍ

θ̈

}
+

[
(k1 + k2) (k2l2 − k1l1)

(k2l2 − k1l1) (k1l
2
1 + k2l

2
2 )

]{
x
θ

}
=

{
0
0

}
x is the linear displacement of the center of mass.

If k1l1 = k2l2 the equations get decoupled.

Anup Ghosh Coordinate Coupling and Beating Phenomenon



Coordinate Coupling
Beating Phenomenon

The general displacement behaviour is[
m me
me J

]{
ẍ

θ̈

}
+

[
(k1 + k2) (k2l4 − k1l3)

(k2l4 − k1l3) (k1l
2
3 + k2l

2
4 )

]{
x
θ

}
=

{
0
0

}
If we consider the displacement coordinate at the place where the

bar produces pure translation, k1l3 = k2l4 and that is not the c.g.,
we get dynamic coupling in the equations of motion.[

m me
me Jc

]{
ẍc
θ̈

}
+

[
(k1 + k2) 0

0 (k1l
2
3 + k2l

2
4 )

]{
xc
θ

}
=

{
0
0

}
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In case of arbitrary selection of the coordinate the equation of
motion may lead to a system which is coupled in both static and
dynamic and the equations of the system becomes

[
m ml1
ml1 J1

]{
ẍ1
θ̈

}
+

[
(k1 + k2) k2l

k2l k2l
2

]{
x1
θ

}
=

{
0
0

}
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# Determine the normal modes of vibration of an automobile
simulated by the simplified 2DOF system with the following

numerical values.
W= 14500N, l1= 1.4m, k1= 35000N/m, Jc = W

g r2, l2=1.7m, k2=
38000N/m, r=1.22m, l=3.1m. Assume c.g. is located l1 distance
from the center of the rear wheel of the car.

This is a case of static coupling. The equation of motion becomes[
m 0
0 J

]{
ẍ

θ̈

}
+

[
(k1 + k2) (k2l2 − k1l1)

(k2l2 − k1l1) (k1l
2
1 + k2l

2
2 )

]{
x
θ

}
=

{
0
0

}
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We need to find out the eigenvalues of the system. Considering the
following form of the equations, where ωi are the eigenvalues or
the frequencies of the system, we have.[

(k1 + k2 −mω2) (k2l2 − k1l1)
(k2l2 − k1l1) (k1l

2
1 + k2l

2
2 − Jcω

2)

]{
x
θ

}
=

{
0
0

}
Considering the determinant to be zero we have,
ω1= 6.87 rad/s = 1.09cps and ω2= 9.13 rad/s = 1.45 cps.
Amplitude ratio of the modes may be found out from the above
equation by substituting the corresponding values of ω.(
x
θ

)
ω1

= −4.78 m/rad = −83.43 mm/deg ,(
x
θ

)
ω2

= 0.31 m/rad = 5.41 mm/deg
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Beating is very interesting experimental/physical observation of the
modal superposition assumption where we assume that the
motion of the system at any time can be expressed as a
superposition of the natural modes of vibration multiplied by
the natural coordinates

Let us consider two identical pendulums connected by a spring. Let
us also assume that the θ1 and θ2 are small angles.
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The moment equations about the points O and O’, respectively,
yield the differential equations shown below

mL2θ̈1 + mgLθ1 + ka2(θ1 − θ2) = 0

mL2θ̈2 + mgLθ2 − ka2(θ1 − θ2) = 0

in matrix form[
mL2 0

0 mL2

]{
θ̈1
θ̈2

}
+

[
mgL + ka2 −ka2
−ka2 mgL + ka2

]{
θ1
θ2

}
=

{
0
0

}
The system is coupled elastically. When k=0 the independent

pendulums have individual natural frequencies =
√

g/L. For
k 6= 0, natural frequencies may be found out from the eigenvalue
solution, i.e.,

[
−ω2

[
mL2 0

0 mL2

]
+

[
mgL + ka2 −ka2
−ka2 mgL + ka2

]]{
Θ1

Θ2

}
=

{
0
0

}
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The frequencies are

ω1 =

√
g

L
and ω2 =

√
g

L
+ 2

k

m

a2

L2

Now from the relation of the previous page the ratio of
Θ21/Θ11 = 1 and Θ22/Θ12 = -1. This implies that the two
pendulums move like a single pendulum with the spring unstretched
in first mode and they are 180◦ out of phase in the other mode.
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Solution of the problem expressed in terms of superposition of two
natural modes multiplied by the associated natural coordinates are{

θ1(t)
θ2(t)

}
= C1

{
Θ1

Θ2

}
1

cos (ω1−φ1)+C2

{
Θ1

Θ2

}
2

cos (ω2−φ2)

Considering Θ11 = Θ12=1

θ1(t) = C1 cos (ω1 − φ1) + C2 cos (ω2 − φ2)

θ2(t) = C1 cos (ω1 − φ1)− C2 cos (ω2 − φ2)

Now with the initial condition θ1(0) = θ0,
θ2(0) = θ̇1(0) = θ̇2(0) = 0

θ1(t) = 1
2θ0 cos ω1t + 1

2θ0 cos ω2t
= θ0 cos(ω2−ω1

2 t) cos(ω2+ω1
2 t)

θ2(t) = θ0 sin(ω2−ω1
2 t) sin(ω2+ω1

2 t)
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θ1(t) = θ0 cos(ω2−ω1
2

t) cos(ω2+ω1
2

t)
θ2(t) = θ0 sin(ω2−ω1

2
t) sin(ω2+ω1

2
t)

If ka2 is very small compared to the to the mgL (observe the first
equation of motion), there exists a weak coupling between the
pendulums. The response becomes.
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The above phenomenon is known as the beating phenomenon. It
is purely the result of adding two harmonic functions of equal
amplitudes and nearly equal frequencies. In this particular case the
first part (θ0 cos(ω2−ω1

2 t) or θ0 sin(ω2−ω1
2 t)) increase or decrease

the amplitude of the oscillatory motion whereas the other part
contribution is manifested into the frequency part.
The variation of amplitude maintains a frequency, i.e., ω2−ω1

2 is
known as the beating frequency.
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# The drilling machine shown can be modeled as a two degree of
freedom system as indicated in the figure. Since a transverse force
applied to mass m1 or mass m2 causes both the masses to deflect,
the system exhibit elastic coupling. the bending stiffness of the
columns are given by

k11 =
786EI

7l3
, k12 = k21 = −240EI

7l3
, k22 =

96EI

7l3

Determine the natural frequencies of the drilling machine.
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The frequency or eigen value equation becomes

|
[
−ω2[m] + [k]

]
| = 0[

(k11 − ω2m1) k12
k21 (k22 − ω2m2)

]
= 0

The expanded equation is

(m1m2)ω4 − (m1k22 + m2k11)ω2 + (k11k22 − k212) = 0

ω2
1, ω

2
2 =

(m1k22 + m2k11)±
√

(m1k22 −m2k11)2 + 4m1m2k212

2m1m2

ω2
1, ω

2
2 =

48

7

EI

m1m2

[
(m1 + 8m2)±

√
(m1 − 8m2)2 + 25m1m2

]
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