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A free vibration equation of a multiple degree of freedom system
may be defined as

[M]{ẍ}+ [K ]{x} = 0

let us assume the displacement vector as

{x} = {a} sin(ωt − α)

Since ωi are found out from the non trivial solution of a set of
homogeneous equations, only the ratio for the components of the
modal vectors ai1/a11, ai2/a12 ... ... ain/a1n can be found out.
These vectors are known as the modal or normal or natural modes
of vibration.
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The equation of equilibrium for the free vibration

[K ]{a} = ω2[M]{a}

Let us consider the mode shapes as the static deflection resulting
from the forces on the right hand side of the equation as shown
below
System -I

Force ω2
1a11m1 ω2

1a21m2

Displacements a11 a21

System -II

Force ω2
2a12m1 ω2

2a22m2

Displacements a12 a22
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Applying Betti’s theorem: For a structure acted upon by two
systems of loads and corresponding displacements, the work done
by the first system of loads moving through the displacements of
the second system is equal to the work done by this second system
of loads undergoing the displacements produced by the fist load
system.

ω2
1a11m1a12 + ω2

1a21m2a22 = ω2
2a12m1a11 + ω2

2a22m2a21

(ω2
1 − ω2

2)(m1a11a12 + m2a21a22) = 0

since ω2
1 6= ω2

2, ⇒ m1a11a12 + m2a21a22 = 0

The above condition is the condition of orthogonality with respect
to mass. or,

m∑
k=1

mkakiakj = 0, for i 6= j
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{ai}T [M]{aj} = 0, for i 6= j

Where {ai} and {aj} are any two modal vectors and [M] is the
mass matrix of the system.
As mentioned before, the amplitude of vibration in a normal mode
are only relative values which may be scaled or normalized to some
extent as a matter of choice. The following is an especially
convenient normalization for a general system.

uij =
aij√

{ai}T [M]{aj}

for a system with diagonal mass matrix

uij =
aij√∑n

k=1 mka2kj
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Under the said normalization the eigen vectors satisfies the
following equations

{u}Ti [M]{u}i = 1, i = 1, 2, 3, ...., n

{u}Ti [M]{u}j = 0, for i 6= j

[u]T [M][u] = [I ]

[u]T [K ][u] = [ω2]
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Let the equation of motion for n-th degree freedom system is

[m]{q̈(t)}+ [k]{q(t)} = {Q(t)}

where [m] and [k] are the n x n symmetric mass and stiffness
matrices of the system and {q(t)} & {Q(t)} are n-dimensional
generalised coordinate and force vectors, respectively.

We need to find out the eigenvalues of the system of equations
considering the following equations.

[m][ω2][u] = [k][u]

where [u] is the modal matrix and [ω2], a diagonal matrix of
natural frequencies squared.
We have proved that modal matrix follow the following properties

[u]T [m][u] = [1] and [u]T [k][u] = [ω2]
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let us consider the linear transformation

{q(t)} = [u]{η(t)}

where {q(t)} and {η(t)} represent two different sets of generalised
coordinates. Now using this and premultiplying the 1st equation by
[u]T and considering the condition of orthogonality with respect to
mass and stiffness, we have

{η̈(t)}+[ω2]{η(t)} = {N(t)}, where {N(t)} = [u]T{Q(t)}

{N(t)} is the generalized force. The above equation may be
represented as n independent equations of the form

η̈r (t) + ω2
r ηr (t) = Nr (t), r = 1, 2, . . . , n

where ηr (t) are known as the normal coordinates of the system.
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We have already found out the response of a damped single degree
of freedom system as

x(t) = 1
mωd

∫ t
0 F (τ)e−ξωn(t−τ) sin ωd(t − τ) dτ

+ x0
(1−ξ2)1/2 e−ξωnt cos (ωd t − ψ) + v0

ωd
e−ξωnt sin ωd t

where ψ = tan−1 ξ
(1−ξ2)1/2

So the complete solution with m=1, ξ =0 and ωd = ωr

ηr (t) = 1
ωr

∫ t
0 Nr (τ) sin ωr (t − τ) dτ

+ηr (0) cos ωr t + η̇r (0)
ωr

sin ωr t, r = 1, 2, . . . , n

where ηr (0) and η̇r (0) are the initial generalized displacements and
velocities respectively.
The response in terms of modal coordinates

{q(t)} = [u]{η(t)} =
n∑

r=1

{u}r ηr (t)
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Initial conditions, at t=0,

{q(0)} = [u]{η(0)} =
n∑

r=1

{u}r ηr (0)

multiplying the above equation by {u}Tr [m] and considering the
orthogonality with respect to mass

ηr (0) = {u}Tr [m]{q(0)}, r = 1, 2, . . . , n

similarly the modal initial velocity is

η̇r (0) = {u}Tr [m]{q̇(0)}, r = 1, 2, . . . , n
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[m]{q̈(t)}+ [c]{q̇(t)}+ [k]{q(t)} = {Q(t)}

let us consider the linear transformation

{q(t)} = [u]{η(t)}

where {q(t)} and {η(t)} represent two different sets of generalised
coordinates. Now using this and premultiplying the result by [u]T

and considering the condition of orthogonality with respect to
mass and stiffness, we have

{η̈(t)}+[C ]{η̇(t)}+[ω2]{η(t)} = {N(t)}, where [C ] = [u]T [c][u]

Following proportional damping, i.e., [c] = α[m] + β[k], where α
and β are constants to be determined
[C ] = α[1] + β[ω2] = [2ξω] and the response becomes

η̈r (t) + 2ξrωr η̇(t) + ω2
r ηr (t) = Nr (t), r = 1, 2, . . . , n
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Response for m=1 and ω = ωdr

ηr (t) = 1
ωd

∫ t
0 Nr (τ)e−ξrωr (t−τ) sin ωdr (t − τ) dτ

+e−ξrωr t [ η0
(1−ξ2r )1/2

cos (ωdr t − ψr ) + η̇0
ωdr

sin ωdr t]

r = 1, 2, . . . , n

where ωdr = (1− ξ2r )1/2ωr and ψ = tan−1 ξr
(1−ξ2r )1/2
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Let the force vector is

F (t) =

{
F1(t)
F2(t)

}
=

{
0

F0f (t)

}
where f (t) is a unit step function.

The equations of equilibrium are

mẍ1(t) + 2kx1(t)− kx2(t) = 0

2mẍ2(t)− kx1(t) + 2kx2(t) = F0f (t)
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[m] = m

[
1 0
0 2

]
[k] = k

[
2 −1
−1 2

]

ω1 = 0.7962

√
k

m
{u}1 =

1√
m

{
0.4597
0.6280

}
ω2 = 1.5382

√
k

m
{u}2 =

1√
m

{
0.8881
−0.3251

}
[u] =

1√
m

{
0.4597 0.8881
0.6280 −0.3251

}
Now using the transformation

{x(t)} = [u]{η(t)}

{N(t)} = [u]T{F (t)} = 1√
m

{
0.4597 0.6280
0.8881 −0.3251

}{
0

F0f (t)

}
=

F0√
m

{
0.6280
−0.3251

}
f (t)
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Now the normal coordinates

η1(t) = 0.6280 F0√
m

1
ω1

∫ t
0 f (τ) sin ω1(t − τ) dτ

since f (τ) = 1 constant

= 0.6280 F0

ω2
1

√
m

(1− cos ω1t)

η2(t) = −0.3251 F0√
m

1
ω2

∫ t
0 f (τ) sin ω2(t − τ) dτ

= −0.3251 F0

ω2
2

√
m

(1− cos ω2t)

Now use the

{x(t)} = [u]{η(t)}

to find out response.
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