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Assumption of Bernoulli-Euler Beam

* Deflection of the beam is small.

* Plane section through a beam taken normal to its axis remain
plane after the beam is subject to bending.
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Following small deflection theory and the force terms, shear and
moments, as function of both x & t, equation of motion
perpendicular to the beam is

V −
(
V +

∂V

∂x

)
+ p(x , t)dx − m̄ dx

∂2y

∂t2
= 0

where m̄ is mass/unit length, so the relation simplifies to,

∂V

∂x
+ m̄

∂2y

∂t2
= p(x , t)
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From the simple bending theory and following the present direction
of co-ordinate and forcing, the moment curvature relation is

M = EI
∂2y

∂x2
and V =

∂M

∂x
⇒ V = EI

∂3y

∂x3

Now substituting this in the equation of motion, we have

EI
∂4y

∂x4
+ m̄

∂2y

∂t2
= p(x , t)

A partial differential equation of fourth order, considering only
transverse flexural deflection. (The deflection associated with the
shear force and associated rotary moment of inertia is not
considered here – Timoshenko’s beam theory)
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Let the forcing term be zero, i.e., p(x , t) = 0, and the equation
reduce to a homogeneous equation

EI
∂4y

∂x4
+ m̄

∂2y

∂t2
= 0

Following the standard method of solution, method of separation
of variable.

y(x , t) = Φ(x) f (t)

Substituting in the above equation we have

EI f (t)
∂4Φ(x)

∂x4
+ m̄ Φ(x)

∂2f (t)

∂t2
= 0

⇒ EI

m̄

ΦIV (x)

Φ
= − f̈ (t)

f (t)

LHS is a function of x and RHS is a function of t, so it is a
constant and let us consider it to be ω2
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So, we have

ΦIV (x)− a4Φ(x) = 0 and f̈ (t) + ω2f (t) = 0,

where, a4 = m̄ω2

EI and it is convenient to find ω from the standard
form given below.

ω = C

√
EI

m̄L4
in which C = (aL)2

The time dependent equation is of standard form, what we have
already found out, so,

f (t) = A′ cos ωt + B ′ sin ωt

For the equation with x, we may assume as

Φ(x) = C ′esx ⇒ (s4 − a4)C ′esx = 0
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For the nontrivial solution,

s4 − a4 = 0

and the roots are

s1 = a, s3 = ai ,
s2 = −a, s4 = −ai

Φ(x) = C1e
ax + C2e

−ax + C3e
iax + C4e

−iax

With use of the trigonometric function

e±ax = cosh ax ± sinh ax
e±iax = cos ax ± i sin ax

Φ(x) = A sin ax + B cos ax + C sinh ax + D cosh ax

The constants A, B, C, D are to be determined from the BCs and
these responsible for defining the amplitude and mode shapes of
vibration.
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Now we need to implement the boundary condition in the above
generalized equation to find out the frequencies and mode-shapes.
In this particular case the BCs are

y(0, t) = 0⇒ Φ(0) = 0, M(0, t)⇒ Φ′′(0) = 0,
y(L, t) = 0⇒ Φ(L) = 0, M(L, t)⇒ Φ′′(L) = 0,

So at the left end where L=0,

Φ(0) = A× 0 + B × 1 + C × 0 + D × 1 = 0 ⇒ B + D = 0
Φ′′(0) = a2(−A× 0− B × 1 + C × 0 + D × 1) = 0 ⇒ −B + D = 0

So, leads to B=0=D
Now with the implementation of the BCs at the right end or x=L,

Φ(L) = A sin aL + C sinh aL = 0

Φ′′(L) = a2(−A sin aL + C sinh aL) = 0

So we have 2C sinh al = 0 ⇒ C = 0, since the hyperbolic sine
function can not vanish except a zero argument. So the above
boundary conditions leads to A sin al = 0.
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Excluding the trivial solution (A=0), we get the frequency equation

sin al = 0⇒ anL = nπ, n = 0, 1, 2, . . .

ωn = n2π2

√
EI

m̄L4
and Φn(x) = A sin

nπx

L

Since the function Φ(x) represent the shape only, the amplitude A
can be assumed as 1. So the response of individual mode becomes

yn(x , t) = Φn(x) fn(t)

yn(x , t) = sin
nπx

L
[An cos ωnt + Bn sin ωnt]

The general solution for any time instant become

y(x , t) =
∞∑
n=1

sin
nπx

L
[An cos ωnt + Bn sin ωnt]
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The constants An and Bn can be found out from the initial
condition w.r.t. time. Let, the displacement and velocity at the
time t = 0 and for the domain 0 ≤ x ≤ L, are

y(x , 0) = ρ(x) =
∞∑
n=1

An sin
nπx

L

and

∂y(x , 0)

∂t
= ψ(x) =

∞∑
n=1

Bn ωn sin
nπx

L

Now using the Fourier series description

An =
2

L

∫ L

0
ρ(x) sin

nπx

L
dx

Bn =
2

ωnL

∫ L

0
ψ(x) sin

nπx

L
dx
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