AE31002 Aerospace Structural Dynamics Free-Free, Fixed and Centilever Beam

Anup Ghosh

Anup Ghosh Free-Free, Fixed and Centilever Beam

Let the forcing term be zero, i.e., p(x, t) = 0, so, the equation reduce to a homogeneous equation

$$EI\frac{\partial^4 y}{\partial x^4} + \bar{m}\frac{\partial^2 y}{\partial t^2} = 0$$

$$y(x,t) = \Phi(x) f(t)$$

$$f(t) = A' \cos \omega t + B' \sin \omega t$$

$$\Phi(x) = A \sin ax + B \cos ax + C \sinh ax + D \cosh ax$$

・ロト ・回ト ・ヨト ・ヨト

3

Free Free Beam Both Ends Fixed Cantilever Beam

A Free Free Beam

In this particular case the BCs are

$$\begin{split} M(0,t) &= 0 \Rightarrow \Phi''(0) = 0, \\ M(L,t) &= 0 \Rightarrow \Phi''(L) = 0, \end{split} \qquad \qquad V(0,t) &= 0 \Rightarrow \Phi'''(0) = 0, \\ V(L,t) &= 0 \Rightarrow \Phi'''(L) = 0, \end{split}$$

So at the left end where L=0,

$$\Phi''(0) = a^2(-B+D) = 0 \qquad \Rightarrow B = D$$

$$\Phi'''(0) = a^3(-A+C) = 0 \qquad \Rightarrow A = C$$

Now for the other end i.e., x=L

$$\Phi''(L) = a^2(-A \sin aL - B \cos aL + C \sinh aL + D \cosh aL) = 0$$

$$\Phi'''(x) = a^3(-A \cos aL + B \sin aL + C \cosh aL + D \sinh aL) = 0$$

イロン イヨン イヨン イヨン

æ

Rearrangement and use of result obtained from the first set of BCs.

$$A(\sinh aL - \sin aL) + B(\cosh aL - \cos aL) = 0$$

$$A(\cosh aL - \cos aL) + B(\sinh aL + \sin aL) = 0$$

For a nontrivial solution of the above equation, it is required that the determinant of the unknown coefficients A and B be equal to zero. So we get.

$$\cos al \ \cosh al - 1 = 0$$
 where $\omega_n = (a_n L)^2 \sqrt{\frac{El}{\bar{m}L^4}}$

We need to find the roots by numerical methods.

Assuming the value of the constant $\mathsf{A}=1$ (since normal modes are determined only to a relative magnitude) a simplification leads to

$$\Phi_n(x) = \cosh a_n x + \cos a_n x - \sigma_n(\sinh a_n x + \sin a_n x)$$

where
$$\sigma_n = \frac{\cosh a_n L - \cos a_n L}{\sinh a_n L - \sin a_n L}$$

Flexural Vibration of Uniform Beam

Free Free Beam Both Ends Fixed Cantilever Beam

TABLE 20.2 Natural Frequencies and Normal Modes for Free Beams.

Natural Frequencies $\omega_n = C_n \sqrt{\frac{EI}{mL^4}}$		Normal Modes		
		$\Phi_n(x) = \cosh a_n x + \cos a_n x - \sigma_n(\sinh a_n x + \sin a_n x)$ $\sigma_n = \frac{\cosh a_n L - \cos a_n L}{\sinh a_n L - \sin a_n L}$		
n	$C_n = (a_n L)^2$	σ_n I_n^{\bullet}	Shapes	
1	22.3733	0.982502 0.83	08 0.2241 0.7761	
2	61.6728	1.000777 0	0.1322 0.8682	
3	120.9034	0.999967 0.364	40 0.094L 0.644L 0.906L	
4	199.8594	1.000001 0	00731 05001 0927L 0277L 07231	

A Fixed Fixed Beam

The boundary conditions for a beam with both ends fixed are as follows. At $\mathsf{x}=\mathsf{0}$ and $\mathsf{x}=\mathsf{L}$

$$egin{aligned} y(0,t) &= 0 \Rightarrow \Phi(0) = 0, \ y'(0,t) &= 0 \Rightarrow \Phi'(0) = 0, \ y(L,t) &= 0 \Rightarrow \Phi(L) = 0, \end{aligned}$$

So at the left end where x=0,

$$\Phi(0) = 0 \qquad \Rightarrow B = -D \\ \Phi'(0) = 0 \qquad \Rightarrow A = -C$$

Now for the other end i.e., x=L

$$\Phi(L) = 0 \Rightarrow (\cos aL - \cosh aL)B + (\sin aL - \sinh aL)A = 0$$

$$\Phi'(L) = 0 \Rightarrow -(\sin aL + \sinh aL)B + (\cos aL - \cosh aL)A = 0$$

The set of equation is same as of the previous case and it leads to the same frequency equation, i.e.,

$$cos al cosh al - 1 = 0$$

Flexural Vibration of Uniform Beam

Free Free Beam Both Ends Fixed Cantilever Beam

$$A = -\frac{\cos aL - \cosh aL}{\sin aL - \sinh aL}B$$

$$\omega_n = (a_n L)^2 \sqrt{\frac{EI}{\bar{m}L^4}}$$

The shape function equation become

$$\Phi_n(x) = \cosh a_n x - \cos a_n x - \sigma_n(\sinh a_n x - \sin a_n x)$$

where
$$\sigma_n = \frac{\cos a_n L - \cosh a_n L}{\sin a_n L - \sinh a_n L}$$

▲□→ ▲圖→ ▲厘→ ▲厘→

æ

Flexural Vibration of Uniform Beam

Free Free Beam Both Ends Fixed Cantilever Beam

TABLE 20.3 Natural Frequencies and Normal Modes for Fixed Beams.

Free Free Beam Both Ends Fixed Cantilever Beam

A Cantilever Beam

The boundary conditions for a beam with one end fixed and the other end free are as follows. At $\mathsf{x}=0$ and $\mathsf{x}=\mathsf{L}$

$$egin{aligned} y(0,t) &= 0 \Rightarrow \Phi(0) = 0, & y'(0,t) &= 0 \Rightarrow \Phi'(0) = 0, \ M(L,t) &= 0 \Rightarrow \Phi''(L) = 0, & V(L,t) &= 0 \Rightarrow \Phi'''(L) = 0, \end{aligned}$$

Following similar approach we have he frequency equation as

$$\cos al \ \cosh al + 1 = 0, \qquad \omega_n = (a_n L)^2 \sqrt{\frac{El}{\bar{m}L^4}}$$

The shape function equation become

$$\Phi_n(x) = \cosh a_n x - \cos a_n x - \sigma_n(\sinh a_n x - \sin a_n x)$$

where $\sigma_n = \frac{\cos a_n L + \cosh a_n L}{\sin a_n L + \sinh a_n L}$

イロト イポト イヨト イヨト

TABLE 20.4 Natural Frequencies and Normal Modes for Cantilever Beams.

