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Let the forcing term be zero, i.e., p(x , t) = 0, so, the equation
reduce to a homogeneous equation

EI
∂4y

∂x4
+ m̄

∂2y

∂t2
= 0

y(x , t) = Φ(x) f (t)

f (t) = A′ cos ωt + B ′ sin ωt

Φ(x) = A sin ax + B cos ax + C sinh ax + D cosh ax
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A Free Free Beam

In this particular case the BCs are

M(0, t) = 0⇒ Φ′′(0) = 0, V (0, t) = 0⇒ Φ′′′(0) = 0,
M(L, t) = 0⇒ Φ′′(L) = 0, V (L, t) = 0⇒ Φ′′′(L) = 0,

So at the left end where L=0,

Φ′′(0) = a2(−B + D) = 0 ⇒ B = D
Φ′′′(0) = a3(−A + C ) = 0 ⇒ A = C

Now for the other end i.e., x=L

Φ′′(L) = a2(−A sin aL−B cos aL+C sinh aL+D cosh aL) = 0

Φ′′′(x) = a3(−A cos aL+B sin aL+C cosh aL+D sinh aL) = 0
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Rearrangement and use of result obtained from the first set of BCs.

A(sinh aL− sin aL) + B(cosh aL− cos aL) = 0

A(cosh aL− cos aL) + B(sinh aL + sin aL) = 0

For a nontrivial solution of the above equation, it is required that
the determinant of the unknown coefficients A and B be equal to
zero. So we get.

cos al cosh al − 1 = 0 where ωn = (anL)2
√

EI

m̄L4

We need to find the roots by numerical methods.
Assuming the value of the constant A = 1 (since normal modes are
determined only to a relative magnitude) a simplification leads to

Φn(x) = cosh anx + cos anx − σn(sinh anx + sin anx)

where σn =
cosh anL− cos anL

sinh anL− sin anL
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A Fixed Fixed Beam

The boundary conditions for a beam with both ends fixed are as
follows. At x = 0 and x = L

y(0, t) = 0⇒ Φ(0) = 0, y ′(0, t) = 0⇒ Φ′(0) = 0,
y(L, t) = 0⇒ Φ(L) = 0, y ′(L, t) = 0⇒ Φ′(L) = 0,

So at the left end where x=0,

Φ(0) = 0 ⇒ B = −D
Φ′(0) = 0 ⇒ A = −C

Now for the other end i.e., x=L

Φ(L) = 0⇒ (cos aL− cosh aL)B + (sin aL− sinh aL)A = 0

Φ′(L) = 0⇒ −(sin aL+ sinh aL)B + (cos aL− cosh aL)A = 0

The set of equation is same as of the previous case and it leads to
the same frequency equation, i.e.,

cos al cosh al − 1 = 0
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A = −cos aL− cosh aL

sin aL− sinh aL
B

ωn = (anL)2
√

EI

m̄L4

The shape function equation become

Φn(x) = cosh anx − cos anx − σn(sinh anx − sin anx)

where σn =
cos anL− cosh anL

sin anL− sinh anL
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A Cantilever Beam

The boundary conditions for a beam with one end fixed and the
other end free are as follows. At x = 0 and x = L

y(0, t) = 0⇒ Φ(0) = 0, y ′(0, t) = 0⇒ Φ′(0) = 0,
M(L, t) = 0⇒ Φ′′(L) = 0, V (L, t) = 0⇒ Φ′′′(L) = 0,

Following similar approach we have he frequency equation as

cos al cosh al + 1 = 0, ωn = (anL)2
√

EI

m̄L4

The shape function equation become

Φn(x) = cosh anx − cos anx − σn(sinh anx − sin anx)

where σn =
cos anL + cosh anL

sin anL + sinh anL
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