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Free Free Beam
Flexural Vibration of Uniform Beam Both Ends Fixed

Cantilever Beam

Let the forcing term be zero, i.e., p(x,t) = 0, so, the equation
reduce to a homogeneous equation

y(x,t) = ®(x) f(t)
f(t) = A" cos wt+ B’ sin wt
®(x) = A sin ax + B cos ax + C sinh ax + D cosh ax
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A Free Free Beam

In this particular case the BCs are

M(0,t) = 0 = ”(0) = 0, V(0,t) = 0 = ¢"(0) =0,
M(L,t) =0 = &"(L) =0, V(L t)=0= &"(L) =0,

So at the left end where L=0,

¢"(0) =a?(-B+D)=0 =B=D
¢"(0) = a}(—A+C)=0 =A=C

Now for the other end i.e., x=L
®”(L) = a*(—~A sin alL — B cos aL+ C sinh aL+D cosh al) = 0

®"(x) = a*(—A cos al+ B sin aL+C cosh aL+D sinh al) = 0
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Rearrangement and use of result obtained from the first set of BCs.
A(sinh aL — sin al) + B(cosh al — cos aL) =0
A(cosh al — cos al) + B(sinh al + sin aL) =0

For a nontrivial solution of the above equation, it is required that

the determinant of the unknown coefficients A and B be equal to

zero. So we get.

5 | El

cos al coshal —1=0 where  wn = (anl)"\/ =7
mL

We need to find the roots by numerical methods.
Assuming the value of the constant A = 1 (since normal modes are
determined only to a relative magnitude) a simplification leads to

®,(x) = cosh apx + cos apx — op(sinh apx + sin a,x)

cosh a,L — cos a,L

where Op = — :
sinh a,L — sin a,L
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TABLE 20.2 Natural Frequencies and Normal Modes for Free Beams,

Natural Frequencies Normal Modes
D, (x) = cosh a,x + c0S ayx - O, (sinh a,x + sin g, x)
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A Fixed Fixed Beam

The boundary conditions for a beam with both ends fixed are as
follows. At x =0and x =1L

y(0,t) = 0= ¢(0) =0, y'(0,t) =0 = ¢'(0) =0,

y(L,t) =0= ®(L) =0, y'(L,t) =0= (L) =0,
So at the left end where x=0,

®(0)=0 =B=-D

®'(0)=0 = A=-C

Now for the other end i.e., x=L
®(L) =0 = (cos aL — cosh al)B + (sin aL — sinh aL)A =0
®'(L) = 0 = —(sin aL + sinh aL)B + (cos aL — cosh aL)A =0

The set of equation is same as of the previous case and it leads to
the same frequency equation, i.e.,

cos al coshal—1=0
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cos al — cosh al

sin al — sinh al

El

Wp = (anL)2 W

The shape function equation become
®,(x) = cosh apx — cos apx — op(sinh apx — sin a,x)

cos aplL — cosh a,L
where op =

sin apL — sinh a,L
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TABLE 20.3 Natural Frequencies and Normal Modes for Fixed Beams.

Natural Frequencies Normal Modes

®,,(x) = cosh a,x - cos ayx - up(sinh ayx - sin a,x)

Wn = Cn % g, = 225 8nl - COMl 3,1
sina,L - sinha,L
n Cp = (a,L)? On I Shape
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A Cantilever Beam

The boundary conditions for a beam with one end fixed and the
other end free are as follows. At x =0 and x = L

y(0,1) =0 = &(0) =0, y'(0,) =0 = /(0) =0,
M(L,t) = 0= &"(L) =0, V(L t)=0= &"(L) =0,

Following similar approach we have he frequency equation as

El
cos al cosh al +1 =0, wp = (a,,L)2 =14
The shape function equation become

®,(x) = cosh apx — cos apx — op(sinh apx — sin apx)

cos aplL + cosh a,L
sin apL + sinh a,L

where op =
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Flexural Vibration of Uniform Beam

TABLE 20.4 Natural Frequencies and Normal Modes for Mbylr Beams.

Natural Frequencies Normal Modes
@, = (cosh apx - ¢08 ayx) - Oy(sinh a,x - sin a,x)
Wy =Cy ﬂ‘- 0_co|¢.L+oo§ha"L
mL sina,L +sinh a,L
n Cp=(@yl) Oy o Shape
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