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Let a beam subjected to the inertial forces from the vibrations of
two different modes, Φm(x) and Φn(x). Corresponding inertial
forces are shown in the figure. The inertial force is obtained from
the multiplication of mass per unit length and the acceleration
amplitude, i.e., fIn = m̄(x)ω2

nΦn(x)
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Betti’s Theorem

for a linear elastic structure subject to two sets of forces {Pi} and
{Qj}, the work done by the set P through the displacements
produced by the set Q is equal to the work done by the set Q
through the displacements produced by the set P.

Accordingly, the work done by the inertial force, fIn, acting on the
displacements of mode m is equal to the work of the inertial force,
fIn, acting on the displacement of mode n, i.e.,∫ L

0
Φm(x) fIn dx =

∫ L

0
Φn(x) fIm dx

ω2
n

∫ L

0
Φm(x) m̄(x)Φn(x) dx = ω2

m

∫ L

0
Φn(x) m̄(x)Φm(x) dx

(ω2
n − ω2

m)

∫ L

0
Φm(x) m̄(x) Φn(x) dx = 0

Since ωn 6= ωm The modes are orthogonal to each other.
Anup Ghosh Forced Vibration



Flexural Vibration of Uniform Beam
Orthogonality of Normal Modes
Forced Vibration of Beams

Following small deflection theory and the force terms, shear and
moments, as function of both x & t, equation of motion
perpendicular to the beam is

V −
(
V +

∂V

∂x

)
+ p(x , t)dx − m̄ dx

∂2y

∂t2
= 0

where m̄ is mass/unit length, so the relation simplifies to,

∂V

∂x
+ m̄

∂2y

∂t2
= p(x , t)
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From the simple bending theory and following the present direction
of co-ordinate and forcing, the moment curvature relation is

M = EI
∂2y

∂x2
and V =

∂M

∂x
⇒ V = EI

∂3y

∂x3

Now substituting this in the equation of motion, we have

EI
∂4y

∂x4
+ m̄

∂2y

∂t2
= p(x , t)

A partial differential equation of fourth order, considering only
transverse flexural deflection. (The deflection associated with the
shear force and associated rotary moment of inertia is not
considered here – Timoshenko’s beam theory)
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Let us assume that the general solution of the of this equation is

y(x , t) =
∞∑
n=1

Φn(x)zn(t)

The normal modes Φn(x) satisfy the basic differential equation

ΦIV (x)− a4Φ(x) = 0 and since a4 = m̄ω2

EI .

EI ΦIV
n = m̄ω2

nΦn(x), n = 1, 2, 3, . . .

To satisfy the force boundary condition, let us substitute it to the
previous equation

EI
∑
n

ΦIV
n (x) zn(t) = p(x , t)− m̄

∑
n

Φn(x) z̈n(t)

∑
n

m̄ω2
nΦn(x) zn(t) = p(x , t)− m̄

∑
n

Φn(x) z̈n(t)
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Multiplying both sides of the equation by Φm(x) dx and integrating
between 0 to L and using the orthogonality condition, we have

ω2
mzm(t)

∫ L

0
m̄Φ2

m dx =

∫ L

0
Φm(x)p(x , t) dx−z̈m(t)

∫ L

0
m̄Φ2

m dx

Now in a generalized form

Mnz̈n(t) + ω2
nMnzn(t) = Fn(t), n = 1, 2, 3, . . .

z̈n(t) + ω2
nzn(t) =

Fn(t)

Mn

where, Mn =
∫ L

0 m̄Φ2
n dx is known as the modal mass and

Fn(t) =
∫ L

0 Φn(x)p(x , t) dx is known as the modal force.
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Consider a simply supported uniform beam subjected to a
concentrated constant force suddenly applied at a section x1 units
from the left support. Determine the response using modal

analysis.

The mode shapes of a simply supported beam are

Φn = sin
nπx

L
, n = 1, 2, 3, . . .

and the modal force is

Fn(t) =

∫ L

0
Φn(x)p(x , t) dx
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In this problem p(x,t) = p0 and x = x1 otherwise p(x,t) = 0.

Fn(t) = P0Φn(x1) ⇒ P0 sin
nπx1

L

The modal mass is

Mn =

∫ L

0
m̄Φ2

n dx =

∫ L

0
m̄ sin2 nπx

L
dx =

m̄L

2

Substituting the value of modal force in the equation
z̈n(t) + ω2

nzn(t) = Fn(t)
Mn

we get

z̈n(t) + ω2
nzn(t) =

P0 sin nπx1
L

m̄L/2

Following the standard solution of the undamped SDOF sytem for
suddenly applied load,

zn = (zst)n(1− cos ωnt)
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Here (zst)n =
2P0 sin nπx1

L

ω2
nm̄L

So, zn =
2P0 sin nπx1

L

ω2
nm̄L

(1− cos ωnt)

The modal deflection at any section of beam is

yn(x , t) = Φn(x)zn(t)

yn(x , t) =
2P0 sin nπx1

L

ω2
nm̄L

(1− cos ωnt) sin
nπx

L

The total deflection is then

y(x , t) =
2P0

m̄L

∑
n

[
1

ω2
n

sin
nπx1

L
(1− cos ωnt) sin

nπx

L

]
Anup Ghosh Forced Vibration



Flexural Vibration of Uniform Beam
Orthogonality of Normal Modes
Forced Vibration of Beams

x1 = L/2

#

yn(x , t) =
2P0

m̄L

∑
n

[
1

ω2
n

sin
nπ

2
(1− cos ωnt) sin

nπx

L

]
# No even mode contribute to the deflection of the beam.

# Position of the excitation is one of the nodes of even modes,
so those do not get excited.

# Amplitude of modal displacement is a measure of a certain
mode.

# Amplitude is dependent on dynamic load factor (1− cos ωnt)
(max value 2) and 1/ω2

n, i.e., 1; 1/81; 1/625 etc.
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