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Orthogonality of Normal Modes

Flexural Vibration of Uniform Beam Forced Vibration of Beams
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Let a beam subjected to the inertial forces from the vibrations of

two different modes, ®,,(x) and ®,(x). Corresponding inertial
forces are shown in the figure. The inertial force is obtained from
the multiplication of mass per unit length and the acceleration

amplitude, i.e., fj, = M(x)w2®,(x)
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Betti's Theorem

for a linear elastic structure subject to two sets of forces {P;} and
{Qj}, the work done by the set P through the displacements
produced by the set Q is equal to the work done by the set Q
through the displacements produced by the set P.

Accordingly, the work done by the inertial force, f,, acting on the
displacements of mode m is equal to the work of the inertial force,
fin, acting on the displacement of mode n, i.e.,
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Since w;, # wm The modes are orthogonal to each other.
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Following small deflection theory and the force terms, shear and
moments, as function of both x & t, equation of motion
perpendicular to the beam is
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where m is mass/unit length, so the relation simplifies to,
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From the simple bending theory and following the present direction
of co-ordinate and forcing, the moment curvature relation is
0%y oM By

Now substituting this in the equation of motion, we have
Oy %y

A partial differential equation of fourth order, considering only
transverse flexural deflection. (The deflection associated with the
shear force and associated rotary moment of inertia is not
considered here — Timoshenko's beam theory)
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Let us assume that the general solution of the of this equation is
y(x,t) Z &, (x)zn(t)

The normal modes ®,(x) satisfy the basic differential equation
v 4 _ : 4 _ mw?
dV(x) — a"®(x) = 0 and since a* = "g-.
El oV = muwld,(x), n=1,2,3,...

To satisfy the force boundary condition, let us substitute it to the
previous equation

E/Zcb"/ t) = p(x, t) — chb
D Awi®n(x) za(t) = p(x, t) — mZdJ
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Multiplying both sides of the equation by ®,(x) dx and integrating
between 0 to L and using the orthogonality condition, we have

L L L
w?nzm(t)/ md2 dx:/ &, (x)p(x, t) dx—ém(t)/ md2 dx
0 0 0
Now in a generalized form

Mpzn(t) + w2Mpz,(t) = Fa(t), n=1223...

(¢
Fa(t)
Mp

Zn(t) + w?zy(t) =

where, M, = [ m®2 dx is known as the modal mass and
= fOL ®,(x)p(x, t) dx is known as the modal force.
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Consider a simply supported uniform beam subjected to a
concentrated constant force suddenly applied at a section x; units
from the left support. Determine the response using modal

=
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The mode shapes of a simply supported beam are

<|>,,:sin”iLX, n=1,2,3,...

and the modal force is
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In this problem p(x,t) = pp and x = x; otherwise p(x,t) = 0.

nmxy

Fn(t) = PO(Dn(Xl) = Py sin
The modal mass is

L L =

L

M,= | mo? dx:/ m sin? X gy = 1%
0 0 L 2

Substituting the value of modal force in the equation

2a(t) + wiza(t) = 2 we get
) Py sinTXL
Zn(t) + W,%Zn(t) = T/;

Following the standard solution of the undamped SDOF sytem for
suddenly applied load,

zp = (2st)n(1 — cos wpt)
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. NTX]
B 2Py sin™t

Here (zst)n Tl

2Py sin™

w%mL (1 — cos wpt)

So, Zp =
The modal deflection at any section of beam is

Vn(x, t) = ®p(x)zn(t)

2Py sin™X mrxl nmwx

Va(x, t) = w%mL (1 — cos wpt) sinT
The total deflection is then
2P, 1
y(x,t) = rﬁz [w,% sin n7rL L(1 - cos wpt) sin?
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x1 = L/2
i

2P 1
Yn(x, t) = m—z d [w% sinn%(l — cos wpt) sinmrLX]

# No even mode contribute to the deflection of the beam.

# Position of the excitation is one of the nodes of even modes,
so those do not get excited.

# Amplitude of modal displacement is a measure of a certain
mode.

# Amplitude is dependent on dynamic load factor (1 — cos wpt)
(max value 2) and 1/w?, i.e., 1; 1/81; 1/625 etc.

n’
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Natural Frequencies and Normal Modes for Simply Supported

Beams.

Natural Frequencies Normal Modes
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