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M∗ =

∫ L

0
m(x) φ2(x) dx Kinetic Energy Consideration

K ∗ =

∫ L

0
EI (x)

{
φ′′(x)

}2
dx Potential Energy Consideration

F ∗(t) =

∫ L

0
p(x , t)φ(x) dx Principle of Virtual Work

C ∗ =

∫ L

0
c(x){φ(x)}2 dx Principle of Virtual Work
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To find out the component of
generalized stiffness with respect
to the axial force, we need to
consider the horizontal
component of the motion δ(t) of
the free end of the beam.

Considering differential element.

dL = (dy2 + dx2)1/2

dL =
(
1 + (dy/dx)2

)1/2
dx

Now, integrating over the horizontal projection of the beam (L’)
and expanding in series the binomial expression,

L =

∫ L′

0

(
1 +

(
dy

dx

)2
)1/2

dx
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L =

∫ L′

0

{
1 +

1

2

(
dy

dx

)2

− 1

8

(
dy

dx

)4

+ . . .

}
dx

Considering only two terms and L=L’ for integration

L = L′ +

∫ L

0

1

2

(
dy

dx

)2

dx

δ(t) = L− L′ =

∫ L

0

1

2

(
dy

dx

)2

dx

Now we define a new stiffness coefficient to be called the
generalized geometric stiffness, K ∗G , as the stiffness of the
equivalent system required to store the same potential energy as
the potential energy stored by the normal force N, i.e.,

1

2
K ∗GY (t)2 = N δ(t) =

1

2
N

∫ L

0

(
dy

dx

)2

dx
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K ∗GY (t)2 = N

∫ L

0

{
Y (t)

dφ

dx

}2

dx

K ∗G = N

∫ L

0

(
dφ

dx

)2

dx

For the case of an axial compressive force the potential energy in
the beam decreases with a loss of stiffness in the beam. The
opposite is true for a tensile axial force which results in an increase
of the flexural stiffness of the beam. Customarily, the geaometric
stiffness is determined for a compressive axial force. Consequently,
the combined generalized stiffness is then given by

K ∗c = K ∗ − K ∗G

Differential equation for the equivalent system

M∗Ÿ (t) + C ∗Ẏ (t) + K ∗c Y (t) = F ∗(t)
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Buckling of Column

The critical buckling load Ncr is defined as the axial compressive
load that reduces the combined stiffness to zero, i.e.,

K ∗c = K ∗ − K ∗G = 0

⇒
∫ L

0
EI

(
d2φ

dx2

)2

dx − Ncr

∫ L

0

(
dφ

dx

)2

dx = 0

So the critical buckling load

Ncr =

∫ L
0 EI

(
d2φ
dx2

)2
dx∫ L

0

(
dφ
dx

)2
dx
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Let us consider a case similar to a pylon
mounted engine/store or may be a case of
huge T tail. Let us assume that the pylon has
a distributed mass m̄ and stiffness EI along its
length with a concentrated mass M = m̄L at
the top. It is subjected to a support excitation
of acceleration ag (t) and to an axial
compressive load due to the weight of its
distributed mass and concentrated mass at the
top. Find the response of the system (neglect
damping)

Let us assume that during the motion the shape of the tower is
given by

φ(x) = 1− cos
πx

2L
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Considering the tip displacement Y(t) as the generalized
coordinate as shown, the displacement at any point

y(x , t) = Y (t)
(

1− cos
πx

2L

)
Generalized mass

M∗ =

∫ L

0
m(x) φ2(x) dx

M∗ = m̄L + m̄

∫ L

0

(
1− cos

πx

2L

)2
dx =

m̄L

2π
(5π − 8)

Generalized stiffness

K ∗ =

∫ L

0
EI (x)

{
φ′′(x)

}2
dx

K ∗ =

∫ L

0
EI
( π

2L

)4
cos2

πx

2L
dx =

π4EI

32L3
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The axial force at any level x, will be due to the vertical portion of
the structure (self weight) and the concentrated weight at the top.

N(x) = m̄Lg
(

2− x

L

)
Then the geometric stiffness coefficient

K ∗G =

∫ L

0
m̄Lg

(
2− x

L

)( π
2L

)2
sin2

πx

2L
dx

K ∗G =
m̄g

16
(3π2 − 4)

So, combined stiffness

K ∗c = K ∗ − K ∗G =
π4EI

32L3
− m̄g

16
(3π2 − 4)

Anup Ghosh Generalized Coordinate



Generalized Coordinate for Vibration Analysis

Considering u as the relative movement between the top mass and
the support, i.e., u(t) = Y (t)− ys(t)
The equation of motion in terms of generalized mass, stiffness and
force becomes

M∗ü + K ∗c u = F ∗eff (t)

Where the F ∗eff (t) get modified due to the coordinate
transformation, so

F ∗eff (t) =

∫ L

0
peff (x , t)φ(x) dx − m̄Lag (t)

and the peff (x , t) = −m̄ag (t) is the inertia force of the continuous
column due to the support movement make the generalized force as

F ∗eff (t) =

∫ L

0
−m̄ag (t)φ(x) dx − m̄Lag (t)
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Now substituting the value of φ(x) and after simplification

F ∗eff (t) = −2m̄ag (t)L

π
(π − 1)

So, the steady state response in terms of relative displacement
becomes

u(t) =
F ∗eff /K

∗
c

1− r2
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Solve a problem for the following parameters.
ag (t) = 20 sin 6.36 t (in/sec2)
m̄ = 0.1 k.sec2/in per unit length,
EI = 1.2 x 1013 k.in2,
L = 100 ft = 1200 in,
ω̄ = 6.36 rad/sec.
Find steady state response u(t).
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u = -0.217 sin 6.36 t in.
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