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We have seen in two examples that if the transverse deflection of a
beam is given as the multiplication of a shape function and a
sinusoidal trigonometric time function, like, w(x,t) = W(x) cos ωt,
the kinetic energy becomes

T =
1

2

∫ l

0
ẇ2 dm =

1

2

∫ l

0
ẇ2ρA(x) dx

Tmax =
ω2

2

∫ l

0
ρA(x)W 2(x) dx

The potential energy of the beam V is the same as the work done
in deforming the beam. Disregarding the work done by shear force,

V =
1

2

∫ l

0
M dθ

Substituting the value of M = EI ∂
2w
∂x2

and θ = ∂w
∂x
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The potential energy become

V =
1

2

∫ l

0
EI (x)

(
∂2w

∂x2

)2

dx and

Vmax =
1

2

∫ l

0
EI (x)

(
d2W (x)

dx2

)2

dx

Now equating the max energy expressions we obtain the
Rayleigh’s quotient

R(ω) = ω2 =

∫ l

0
EI (x)

(
d2W (x)

dx2

)2

dx∫ l

0
ρA(x)W 2(x) dx

R(ω) = ω2 =

∫ l1

0

E1I1

(
d2W (x)

dx2

)2

dx +

∫ l2

l1

E2I2

(
d2W (x)

dx2

)2

dx + . . .∫ l1

0

ρA1(x)W
2(x) dx +

∫ l2

l1

ρA2(x)W
2(x) dx + . . .
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# Find the fundamental frequency of transverse vibration of the
nonuniform cantilever beam shown below using the deflection
shape W(x) = (1- x/l)2.

The cross sectional area and the moment of inertia of the
transverse cross section about centroidal axis are

A(x) =
hx

l
and I (x) =

1

12

(
hx

l

)3
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From the Rayleigh’s quotient

ω2 =

∫ l

0
E

1

12

(
hx

l

)3( 2

l2

)2

dx∫ l

0
ρ

(
hx

l

)(
1− x

l

)4
dx

= 2.5
Eh2

ρl4
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# Using Rayleigh’s method, determine the fundamental natural
frequency of the system

For a shaft under torsion, the shear stress τ at a distance r from
the center of the shaft is given by

τ =
Mt(x) r

J
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Potential energy in terms of strain energy is

V =
1

2

∫ ( τ
G
· τdA

)
dx =

1

2

∫ (
τ2

G
dA

)
dx

As we know from the torsion of circular shaft

Mt(x) = GJ
∂θ

∂x
⇒ V =

1

2

∫ l

0
GJ

(
∂θ

∂x

)2

dx

Kinetic energy of the shaft can be written as

T =
1

2

∫ l

0
ρJ

(
∂θ

∂t

)2

dx
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Let us assume a harmonic variation of rotational displacement
function θ(x,t) as

θ(x , t) = Θ(x) cos(ωt)

Now equating Vmax and Tmax

ω2 =

∫ l

0
GJ

(
∂Θ(x)

∂x

)2

dx∫ l

0
ρJ (Θ(x))2 dx

For a steel shaft G = 80 x 109 N/m2; and ρ g = 75.9 kN/m3

J =
πd4

32
=

π

32
(0.05)4 = 61.3594× 10−8m4
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Let us assume that Θ(x) varies linearly on either side of the
lumped mass.

Θ(x) =
θ0x

0.8
and

∂Θ

∂x
=

θ0
0.8

; 0 ≤ x ≤ 0.8

Θ(x) =
θ0(1− x)

0.2
and

∂Θ

∂x
= − θ0

0.2
; 0.8 ≤ x ≤ 1∫ l

0
GJ

(
∂Θ(x)

∂x

)2

dx = 306797θ20∫ l

0
ρJ (Θ(x))2 dx = 159.54× 10−5θ20

ω2 = 1923.0292× 105 rad/sec

Anup Ghosh Approximate Methods



Rayleigh’s Method
Rayleigh-Ritz method

# Find the fundamental frequency of a simply supported beam
using the deflection pattern

W (x) =
(
C sin

πx

l

)
sin ωt
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The second derivative of the deflection function

d2W (x)

dx2
= −

(π
l

)2
C sin

πx

l
sin ωt

From the Rayleigh quotient

ω2 =

EI
(
π
l

)4 ∫ l

0
sin2

πx

l
dx

m

∫ l

0
sin2

πx

l
dx

= π4
EI

ml4

ω = π2
√

EI

ml4
exact solution

It may be proved that for inconsistent assumption of deflected
shape the estimated fundamental frequency becomes higher than
the exact natural frequency.
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Rayleigh-Ritz method is an extension of the Rayleigh’s energy
method.

Here we assume more shape functions or approximate
deflection/representation of the structure to get more
accurate frequencies and mode shapes.

An arbitrary number of functions can be used to obtain that
many number of frequencies and mode shapes.

It also increases computation cost.

If n arbitrary functions are chosen to describe the transverse
vibration of beam the generalized deflection becomes

W (x) = c1w1(x) + c2w2(x) + · · ·+ cnwn(x)

where w1(x), w2(x), . . . wn(x) are the admissible function
of the spatial variable x, which satisfy the boundary
condition of the structure.
The constants ci are the arbitrary constants to be determined
to have best possible mode shapes in combination of wi (x).
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To obtain the constants ci , natural frequency is made
stationary at natural modes.

The partial derivative of Rayleig quotient w.r.t.
constants ci are made to zero.

∂(ω2)

∂ci
= 0, i = 1, 2, 3, . . . , n

The above equation denotes a set of n linear algebraic
equation in the coefficients c1, c2, . . . , cn and also contains the
undetermined quantity ω2.

It is an eigenvalue problem to yield n natural frequencies and
n natural modes.

The i-th mode with respect to the i-th natural frequency

{C (i)} =
{
c
(i)
1 c

(i)
2 c

(i)
3 . . . c

(i)
n

}T
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# Find the natural frequencies of transverse vibration of the
nonuniform cantilever beam shown below using the deflection
shapes

w1(x) =
(

1− x

l

)2
and w2(x) =

x

l

(
1− x

l

)2
.
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The cross sectional are and the moment of inertia of the transverse
cross section about centroidal axis are

A(x) =
hx

l
and I (x) =

1

12

(
hx

l

)3

W (x) = c1
(

1− x

l

)2
+ c2

x

l

(
1− x

l

)2
Rayleigh’s quotient

R(W (x)) = ω2 =

∫ l

0
EI (x)

(
d2W (x)

dx2

)2

dx∫ l

0
ρA(x)W 2(x) dx

=
X

Y
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The condition that make ω2 or R(W(x)) stationary are

∂(ω2)

∂c1
=

Y ∂X
∂c1
− X ∂Y

∂c1

Y 2
= 0

∂(ω2)

∂c2
=

Y ∂X
∂c2
− X ∂Y

∂c2

Y 2
= 0

May be rewritten as

∂X

∂c1
− X

Y

∂Y

∂c1
=
∂X

∂c1
− ω2 ∂Y

∂c1
= 0

∂X

∂c2
− X

Y

∂Y

∂c2
=
∂X

∂c2
− ω2 ∂Y

∂c2
= 0

Evaluating the X and Y,

X =
Eh3

3l3

(
c21
4

+
c22
10

+
c1c2

5

)
and Y = ρhl

(
c21
30

+
c22

280
+

2c1c2
105

)
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The algebraic equations become (12 − ω̄2 1
15

) (
1
5 − ω̄

2 2
105

)
(
1
5 − ω̄

2 2
105

) (
1
5 − ω̄

2 2
140

)


c1

c2

 =


0

0


where, ω̄2 = 3ω2ρl4

Eh2
By setting determinant equal to zero

1

8820
ω̄4 − 13

1400
ω̄2 +

3

50
= 0

ω̄1 = 2.6599 ⇒ ω1 ' 1.5367

(
Eh2

ρl4

)1/2

ω̄1 = 8.6492 ⇒ ω1 ' 4.9936

(
Eh2

ρl4

)1/2
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